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HOOMD-TF

This plugin enables the use of TensorFlow in a
HOOMD-blue simulation

HOOMD-TF can be used for a variety of tasks such as online force-matching, online machine learning in HOOMD-blue simulations,
and arbitrary collective variable calculations using TensorFlow tensor operations. Because both HOOMD-blue and TensorFlow are GPU-accelerated,
HOOMD-TF was designed with speed in mind, and minimizes latency with a GPU-GPU communication scheme. Of particular interest,
HOOMD-TF allows for online machine learning with early termination, rather than the more tradditional batch learning approach for MD+ML.

HOOMD-TF includes several utility functions as convenient built-ins, such as:


	RDF calculation


	EDS Biasing (See this paper [https://www.tandfonline.com/doi/full/10.1080/08927022.2019.1608988])


	Coarse-Grained simulation force matching




In addition to all these, the TensorFlow interface of HOOMD-TF makes implementing arbitrary ML models as easy as it is in TensorFlow, by exposing the HOOMD-blue neighbor list and particle positions to TensorFlow. This enables GPU-accelerated tensor calculations, meaning arbitrary collective variables can be treated in the TensorFlow model framework, as long as they can be expressed as tensor operations on particle positions or neighbor lists.
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Tutorial

See example notebooks here [https://nbviewer.jupyter.org/github/ur-whitelab/hoomd-tf/tree/master/examples/] to learn about what Hoomd-TF can do.
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Quickstart Tutorial

Here’s an example of how you use Hoomd-TF. To compute a 1 / r
pairwise potential:

import hoomd, hoomd.md
import hoomd.htf as htf
import tensorflow as tf

########### Graph Building Code ###########
graph = htf.graph_builder(64) # max neighbors = 64
pair_energy = graph.nlist_rinv # nlist_rinv is neighbor 1 / r
particle_energy = tf.reduce_sum(pair_energy, axis=1) # sum over neighbors
forces = graph.compute_forces(particle_energy) # compute forces
graph.save('my_model', forces)

########### Hoomd-Sim Code ################
hoomd.context.initialize()
# this will start TensorFlow, so it goes
# in a with statement for clean exit
with htf.tfcompute('my_model') as tfcompute:
    # create a square lattice
    system = hoomd.init.create_lattice(unitcell=hoomd.lattice.sq(a=4.0),
                                        n=[3,3])
    nlist = hoomd.md.nlist.cell()
    hoomd.md.integrate.mode_standard(dt=0.005)
    hoomd.md.integrate.nve(group=hoomd.group.all())
    tfcompute.attach(nlist, r_cut=3.0)
    hoomd.run(1e3)





This creates a computation graph whose energy function is 2 / r and
also computes forces and virial for the simulation. The 2 is because
the neighborlists in Hoomd-TF are full neighborlists (double counted).
The Hoomd-blue code starts a simulation of a 9 particle square lattice
and simulates it for 1000 timesteps under the potential defined in our
Hoomd-TF model. The general process of using Hoomd-TF is to build a
TensorFlow computation graph, load the graph, and then attach the graph.
See Building the Graph and Using a Graph in a Simulation for a more detailed
description. Or see a complete set of Jupyter Notebook tutorials [https://nbviewer.jupyter.org/github/ur-whitelab/hoomd-tf/tree/master/examples/].
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Contributor Code of Conduct


Introduction

All contributors to this project are expected to follow the code of conduct
detailed in this document at all times when engaging with or discussing the HOOMD-TF project.
This includes public/private mailing lists, issue tracker threads,
blogs, personal websites, social media, and any other forms of communication, in-person or otherwise.

This code of conduct is expected to be followed by any and all participants, whether or not they are affiliated with
the White Laboratory [https://github.com/ur-whitelab], whether or not they claim affiliation with HOOMD-TF,
including when representing HOOMD-TF in any capacity.

This code of conduct is not exhaustive and may be subject to changes and improvements in the future. It is meant
to foster an environment of collaboration and respect. In order to maintain a respectful community, please
follow the intent of this page as much as the literal writing.




Specific Guidelines

We, the contributors and participants, aim to:

1. Be welcoming. Any and all who are willing and able to contribute to this project
should feel welcome to participate. To this end, we encourage the use of public communication
such as GitHub issue tracking as much as possible, to ensure those who join later can
benefit from any useful discussion.

2. Be nice. We strive to avoid assigning ill intent and assume the best of others first. We should be patient with
newcomers and avoid talking down to anyone. We should never allow personal negative feelings to turn into
an attack on someone else’s character or work. A negative environment is counter-productive and just not pleasant.
In particular, violence, threats of violence, unwelcome personal advances, insults, and sexist or racist comments or
jokes are entirely unwelcome, as is encouragement of any of these.


	Be humble. Criticisms of code are not personal and should be taken on good faith. Any improvement is good.




4. Be patient. Everyone has different levels of experience, and a willingness to learn should be met with
a willingness to teach. Not everyone is obligated to answer every question in-depth, but no one should be
ignored or barred from helping because of a lack of experience.

5. Be transparent. Since this is a community project, new users and developers should be able to understand how
and why it works the way it does. Contributors should be willing to answer questions about their work, and should
follow the documentation style to ensure a smooth learning curve.

6. Be inclusive. Discrimination based on age, disability, ethnicity, familial status, gender identity, nationality, religion, sex,
sexual orientation, or any legally-protected group will not be tolerated.




Reporting Issues

Issues can be reported via GitHub [https://github.com/ur-whitelab/hoomd-tf/issues/]. When opening an issue, please be as specific as
possible, and provide a way to replicate your issue so it can be addressed readily.




Contributing

Contributions are welcome and can be submitted by opening a pull request on our GitHub [https://github.com/ur-whitelab/hoomd-tf/pulls].
As with reporting an issue, pull requests for contributions should be as specific as possible for smooth integration into the codebase. Please
ensure that all tests pass before opening a pull request. If your PR includes new functionality, please also include unit testing for it, following
the testing and documentation framework (see here [https://github.com/ur-whitelab/hoomd-tf/tree/master/htf/test-py]).
A contribution PR should include:


	What the contribution is meant to address.


	How to run any new unit tests (if applicable).
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Installation Guide


Installing HOOMD-TF


	Compiling
	Prerequisites

	Python and GCC requirements

	Simple Compiling

	Compiling with Hoomd-Blue

	Conda Environments

	Updating Compiled Code

	MBuild Environment





	HPC Installation

	Optional Dependencies
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Compiling


Prerequisites

The following packages are required to compile:

tensorflow < 2.0
hoomd-blue == 2.5.2 (for GPU)
hoomd-blue >= 2.5.2 (for CPU)
numpy
tbb-devel (only for hoomd-blue 2.8 and above)





tbb-devel is required for hoomd-blue 2.8 or above when using the
hoomd-blue conda release. It is not automatically installed when
installing hoomd-blue, so use conda install -c conda-forge
tbb-devel to install. The Tensorflow version should be any
Tensorflow 1 release. The higher versions, like 1.14, 1.15, will give
lots of warnings about migrating code to Tensorflow 2.0. It is
recommended you install via pip:

pip install tensorflow-gpu==1.15.0








Python and GCC requirements

If you install tensorflow with pip, as recommended, this
provides a pre-built version of tensorflow which has
specific GCC and Python versions. When you compile
hoomd-tf, these must match what is found by cmake. So if your version
of tensorflow used gcc-7x, then you must have gcc-7x available on your machine.
The cmake script in hoomd-tf will check for this and tell you if they do not match.




Simple Compiling

Install hoomd-blue and Tensorflow by your preferred method. If you
want to install hoomd-blue without GPU support, you can just use the
conda release via conda install -c conda-forge hoomd==2.5.2. You
should then similarly use the CPU version of Tensorflow (pip install tensorflow==1.15). If you would
like GPU support, compile hoomd-blue using their instructions [http://hoomd-blue.readthedocs.io]. Remember that pip is recommended
for installing Tensorflow. Here are steps after installing
hoomd-blue and tensorflow

git clone https://github.com/ur-whitelab/hoomd-tf
cd hoomd-tf && mkdir build && cd build
CXX=g++ CC=gcc cmake ..
make install





That’s it! Check your install by running python
htf/test-py/test_sanity.py.  If you have installed with GPU support, also
check with python htf/test-py/_test_gpu_sanity.py.




Compiling with Hoomd-Blue

Use this method if you need to compile with developer flags on or other
special requirements.

git clone --recursive https://bitbucket.org/glotzer/hoomd-blue hoomd-blue





We typically use v2.5.2 of hoomd-blue

cd hoomd-blue && git checkout tags/v2.5.2





Now we put our plugin in the source directory with a softlink:

git clone https://github.com/ur-whitelab/hoomd-tf
ln -s $HOME/hoomd-tf/htf $HOME/hoomd-blue/hoomd





Now compile (from hoomd-blue directory). Modify options for speed if
necessary. Set build type to DEBUG if you need to troubleshoot.

mkdir build && cd build
CXX=g++ CC=gcc cmake .. -DCMAKE_BUILD_TYPE=Release \
 -DENABLE_CUDA=ON -DENABLE_MPI=OFF\
 -DBUILD_HPMC=off -DBUILD_CGCMM=off -DBUILD_MD=on\
 -DBUILD_METAL=off -DBUILD_TESTING=off -DBUILD_DEPRECATED=off -DBUILD_MPCD=OFF \
 -DCMAKE_INSTALL_PREFIX=`python -c "import site; print(site.getsitepackages()[0])"`





Now compile with make:

make





Option 1: Put build directory on your python path:

export PYTHONPATH="$PYTHONPATH:`pwd`"





Option 2: Install in your python site-packages

make install








Conda Environments

If you are using a conda environment, you may need to force cmake to
find your python environment. This is rare, we only see it on our
compute cluster which has multiple conflicting version of python and
conda. The following additional flags can help with this:

export CMAKE_PREFIX_PATH=/path/to/environment
CXX=g++ CC=gcc cmake .. \
-DPYTHON_INCLUDE_DIR=$(python -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())") \
-DPYTHON_LIBRARY=$(python -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))") \
-DPYTHON_EXECUTABLE=$(which python) \
-DCMAKE_BUILD_TYPE=Release -DENABLE_CUDA=ON -DENABLE_MPI=OFF -DBUILD_HPMC=off -DBUILD_CGCMM=off -DBUILD_MD=on \
-DBUILD_METAL=off -DBUILD_TESTING=off -DBUILD_DEPRECATED=off -DBUILD_MPCD=OFF \
-DCMAKE_INSTALL_PREFIX=`python -c "import site; print(site.getsitepackages()[0])"`








Updating Compiled Code

If you are developing frequently, add the build directory to your
python path instead of make install (only works with hoomd-blue
compiled). Then if you modify C++ code, only run make (not cmake). If
you modify python, just copy over py files (htf/*py to
build/hoomd/htf).




MBuild Environment

If you are using mbuild, please follow these additional install steps:

conda install numpy cython
pip install requests networkx matplotlib scipy pandas plyplus lxml mdtraj oset
conda install -c omnia -y openmm parmed
conda install -c conda-forge --no-deps -y packmol gsd
pip install --upgrade git+https://github.com/mosdef-hub/foyer git+https://github.com/mosdef-hub/mbuild










HPC Installation

These are instructions for our group’s cluster (BlueHive), and not for general users. Feeling Lucky? Try this for quick results

module load cmake gcc/7.3.0 cudnn/10.0-7.5.0 anaconda3/2019.10
export PYTHONNOUSERSITE=True
conda create -n hoomd-tf python=3.7
source activate hoomd-tf
export CMAKE_PREFIX_PATH=/path/to/environment
python -m pip install tensorflow-gpu==1.15.0
conda install -c conda-forge hoomd==2.5.2
git clone https://github.com/ur-whitelab/hoomd-tf
cd hoomd-tf && mkdir build && cd build
CXX=g++ CC=gcc cmake .. \
  -DPYTHON_INCLUDE_DIR=$(python -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())") \
  -DPYTHON_LIBRARY=$(python -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))") \
  -DPYTHON_EXECUTABLE=$(which python)
make install
cd .. && python htf/test-py/test_sanity.py





Here are the more detailed steps. Clone the hoomd-tf repo
and then follow these steps:

Load the modules necessary:

module load cmake gcc/7.3.0 cudnn/10.0-7.5.0 anaconda3/2019.10





Set-up virtual python environment ONCE to keep packages isolated.

conda create -n hoomd-tf python=3.7
source activate hoomd-tf
python -m pip install tensorflow-gpu==1.15.0





Then whenever you login and have loaded modules:

source activate hoomd-tf





Continue following the compling steps below to complete install.
The simple approach is recommended but use the following
different cmake step

export CMAKE_PREFIX_PATH=/path/to/environment
CXX=g++ CC=gcc cmake ..





If using the hoomd-blue compilation, use the following
different cmake step

export CMAKE_PREFIX_PATH=/path/to/environment
CXX=g++ CC=gcc cmake .. \
-DPYTHON_INCLUDE_DIR=$(python -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())") \
-DPYTHON_LIBRARY=$(python -c "import distutils.sysconfig as sysconfig; print(sysconfig.get_config_var('LIBDIR'))") \
-DPYTHON_EXECUTABLE=$(which python) \
-DCMAKE_BUILD_TYPE=Release -DENABLE_CUDA=ON -DENABLE_MPI=OFF -DBUILD_HPMC=off -DBUILD_CGCMM=off -DBUILD_MD=on \
-DBUILD_METAL=off -DBUILD_TESTING=off -DBUILD_DEPRECATED=off -DBUILD_MPCD=OFF \
-DCMAKE_INSTALL_PREFIX=`python -c "import site; print(site.getsitepackages()[0])"`\
-DNVCC_FLAGS="-ccbin /software/gcc/7.3.0/bin"








Optional Dependencies

Following packages are optional:
.. code:: bash



MDAnalysis




utils.run_from_trajectory uses MDAnalysis for trajectory parsing
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Unit Tests

You can run the unit tests directly via python htf/test-py/test_tensorflow.py,
python htf/test-py/test_utils.py, etc. For convenience, you can also install the pyest package and run the following from the root
HOOMD-TF directory:

pytest htf/test-py/
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Benchmarking

The benchmark.py script in the htf/benchmarking directory is a convenience script for checking benchmark results. Example
use syntax is shown below. This will run a benchmark trial with 10000 Lennard-Jones particles with HOOMD-blue in GPU configuration,
and save the results as a .txt file in the current working directory. The first argument should be an integer for the number of particles
to simulate. The second should be either “gpu” or “cpu” to indicate the execution mode, and the third indicates where to save the results.
Note that large systems may take some time, as the HOOMD benchmarking utility runs five repeats of a 50,000 timestep simulation with 6,000 steps
of warmup each time. In order to run GPU profiling, make sure you have compiled for GPU (see Compiling).

python htf/benchmarking/benchmark.py 10000 gpu $(pwd)
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Building the Graph

To construct a graph, create a graphbuilder.graph_builder instance:

import hoomd.htf as htf
graph = htf.graph_builder(NN, output_forces)





where NN is the maximum number of nearest neighbors to consider
(can be 0). This is an upper-bound, so choose a large number. If you
are unsure, you can guess and add check_nlist = True. This will
cause the program to halt if you choose too low.
output_forces indicates if the graph will output forces to use in
the simulation. After building the graph, it will have five
tensors as attributes that can be used when constructing the
TensorFlow graph: nlist, positions, box, box_size, and
forces:


	nlist is an N x NN x 4 tensor containing the nearest
neighbors. An entry of all zeros indicates that less than NN nearest
neighbors where present for a particular particle. The 4 right-most
dimensions are x,y,z and w, which is the particle type. Particle
type is an integer starting at 0. Note that the x,y,z values are a
vector originating at the particle and ending at its neighbor.


	positions is an N x 4 tensor of particle positions (x,y,z) and type.


	forces is an N x 4 tensor that is  only available if the graph does
not output forces (via output_forces=False).


	box is a 3x3 tensor containing the low box
coordinate, high box coordinate, and then tilt factors. box_size
contains just the box length in each dimension.





Molecule Batching

It may be simpler to have positions or neighbor lists or forces arranged
by molecule. For example, you may want to look at only a particular bond
or subset of atoms in a molecule. To do this, you can call
graphbuilder.graph_builder.build_mol_rep(), whose argument
MN is the maximum number of atoms
in a molecule. This will create the following new attributes:
mol_positions, mol_nlist, and mol_forces (if your graph has
output_forces=False). These new attributes are dimension
M x MN x ... where M is the number of molecules and MN is
the atom index within the molecule. If your molecule has fewer than
MN atoms, extra entries will be zeros. You can defnie a molecule to be
whatever you want, and atoms need not be only in one molecule. Here’s an
example to compute a water angle, where we assume that the oxygens
are the middle atom:

import hoomd.htf as htf
graph = graph_builder(0)
graph.build_mol_rep(3)
# want slice for all molecules (:)
# want h1 (0), o (1), h2(2)
# positions are x,y,z,w. We only want x,y z (:3)
v1 = graph.mol_positions[:, 2, :3] - graph.mol_positions[:, 1, :3]
v2 = graph.mol_positions[:, 0, :3] - graph.mol_positions[:, 1, :3]
# compute per-molecule dot product and divide by per molecule norm
c = tf.einsum('ij,ij->i', v1, v2) / tf.norm(v1, axis=1) / tf.norm(v2 axis=1)
angles = tf.math.acos(c)








Computing Forces

If your graph is outputting forces, you may either compute forces and
pass them to graphbuilder.graph_builder.save() or have them computed via
automatic differentiation of a potential energy. Call
graphbuilder.graph_builder.compute_forces() with the argument energy,
which can be either a scalar or a tensor which depends on nlist and/or positions. A tensor of
forces will be returned as \(\sum_i(\frac{-\partial E} {\partial n_i}) - \frac{dE} {dp}\), where the sum is over
the neighbor list. For example, to compute a \(1 / r\) potential:

graph = htf.graph_builder(N - 1)
#remove w since we don't care about types
nlist = graph.nlist[:, :, :3]
#get r
r = tf.norm(nlist, axis=2)
#compute 1. / r while safely treating r = 0.
# halve due to full nlist
rij_energy = 0.5 * graph.safe_div(1, r)
#sum over neighbors
energy = tf.reduce_sum(rij_energy, axis=1)
forces = graph.compute_forces(energy)





Notice that in the above example that we have used the
graphbuilder.graph_builder.safe_div() method, which allows
us to safely treat a \(1 / 0\), which can arise because nlist
contains 0s for when fewer than NN
nearest neighbors are found.

Note: because nlist is a full
neighbor list, you should divide by 2 if your energy is a sum of
pairwise energies.




Neighbor lists

As mentioned above, graphbuilder.graph_builder contains a member called
nlist, which is an N x NN x 4
neighobr list tensor. You can ask for masked versions of this with
graphbuilder.graph_builder.masked_nlist()
where type_i and type_j are optional integers that specify the type of
the origin (type_i) or neighobr (type_j). The nlist argument
allows you to pass in your own neighbor list and type_tensor allows
you to specify your own list of types, if different than what is given
by hoomd-blue. You can also access nlist_rinv which gives a
pre-computed 1 / r (dimension N x NN).




Virial

The virial is computed and added to the graph if you use the
graphbuilder.graph_builder.compute_forces() method
and your energy has a non-zero derivative
with respect to nlist. You may also explicitly pass the virial when
saving, or pass None to remove the automatically-calculated virial.




Finalizing the Graph

To finalize and save your graph, you must call
graphbuilder.graph_builder.save() with the following arguments:


	directory: where to save your TensorFlow model files


	force_tensor (optional): your computed forces, either as
computed by your graph or output from graphbuilder.graph_builder.compute_forces().
This should be an N x 4 tensor with the 4th column indicating per-particle potential energy.


	virial (optional): the virial tensor to save. The virial should be an N x 3 x 3 tensor.


	out_nodes (optional): If your graph is not outputting forces, then you must provide a tensor or list of
tensors which will be computed at each timestep.







Saving Data

Using variables is the best way to save computed quantities while
running a compute graph. See the Loading Variables section for
loading them. You can save a tensor value to a variable using
graphbuilder.graph_builder.save_tensor(). Here is an
example of computing the LJ potential and saving the system energy at
each step.

# set-up graph
graph = htf.graph_builder(NN)
# compute LJ potential
inv_r6 = graph.nlist_rinv**6
p_energy = 4.0 / 2.0 * (inv_r6 * inv_r6 - inv_r6)
energy = tf.reduce_sum(p_energy)
# save the tensor
graph.save_tensor(energy, 'lj-energy')
forces = graph.compute_forces(energy)
# save the graph
graph.save(force_tensor=forces, model_directory=directory)





Often you may want a running mean of a variable, for which there is a
built-in, graphbuilder.graph_builder.running_mean():

# set-up graph to compute energy
...
# we name our variable avg-energy
graph.running_mean(energy, 'avg-energy')
# run the simulation
...








Variables and Restarts

In TensorFlow, variables are generally trainable parameters. They are
required parts of your graph when doing learning. Each save_period
(set as arg to tensorflowcompute.tfcompute.attach()),
they are written to your model directory.
Note that when a run is started, the latest values of your
variables are loaded from your model directory. If you are starting a
new run but you previously ran your model, the old variable values will
be loaded. To prevent this unexpectedly loading old checkpoints, if you
run graphbuilder.graph_builder.save(), it will move out all old checkpoints. This
behavior means that if you want to restart, you should not re-run
graphbuilder.graph_builder.save() in your restart script, nor should you pass
move_previous = False as a parameter if you re-run
graphbuilder.graph_builder.save().

Variables are also how you save data as seen above. If you are doing
training and also computing other variables, be sure to set your
variables which you do not want to be affected by training optimization
to be trainable=False when constructing them.




Loading Variables

You may load variables after the simulation using the following syntax:

variables  = htf.load_variables(model_dir, ['avg-energy'])





The utils.load_variables() is general and can be used to load trained,
non-trained, or averaged variables. It is important to name your custom
variables so they can be loaded using this function.




Period of out nodes

You can modify how often tensorflow is called via
tensorflowcompute.tfcompute.attach(). You can also have more granular control of
operations/tensors passed to out_nodes by changing the type to a
list whose first element is the tensor and the second argument is the
period at which it is computed. For example:

...graph building code...
forces = graph.compute_forces(energy)
avg_force = tf.reduce_mean(forces, axis=-1)
print_node = tf.Print(energy, [energy], summarize=1000)
graph.save(force_tensor=forces, model_directory=name, out_nodes=[[print_node, 100], [avg_force, 25]])





This will print the energy every 100 steps and compute the average force
every 25 steps (although it is unused). Note that these two ways of
affecting period both apply. So if the above graph was attached with
tfcompute.attach(..., period=25) then the print_node will be
run only every 2500 steps.




Printing

If you would like to print out the values from nodes in your graph, you
can add a print node to the out_nodes. For example:

...graph building code...
forces = graph.compute_forces(energy)
print_node = tf.Print(energy, [energy], summarize=1000)
graph.save(force_tensor=forces, model_directory=name, out_nodes=[print_node])





The summarize keyword sets the maximum number of numbers to print.
Be wary of printing thousands of numbers per step.




Optional: Keras Layers for Model Building

Currently HOOMD-TF supports Keras layers in model building. We do not
yet support Keras Model.compile() or Model.fit(). This example
shows how to set up a neural network model using Keras layers.

import tensorflow as tf
from tensorflow.keras import layers
import hoomd.htf as htf

NN = 64
N_hidden_nodes = 5
graph = htf.graph_builder(NN, output_forces=False)
r_inv = graph.nlist_rinv
input_tensor = tf.reshape(r_inv, shape=(-1,1), name='r_inv')
#we don't need to explicitly make a keras.Model object, just layers
input_layer = layers.Input(tensor=input_tensor)
hidden_layer = layers.Dense(N_hidden_nodes)(input_layer)
output_layer = layers.Dense(1, input_shape=(N_hidden_nodes,))(hidden_layer)
#do not call Model.compile, just use the output in the TensorFlow graph
nn_energies = tf.reshape(output_layer, [-1, NN])
calculated_energies = tf.reduce_sum(nn_energies, axis=1, name='calculated_energies')
calculated_forces = graph.compute_forces(calculated_energies)
#cost and optimizer must also be set through TensorFlow, not Keras
cost = tf.losses.mean_squared_error(calculated_forces, graph.forces)
optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)
#save using graph.save, not Keras Model.compile
graph.save(model_directory='/tmp/keras_model/', out_nodes=[ optimizer])





The model can then be loaded and trained as normal. Note that
keras.models.Model.fit() is not currently supported. You must train
using tensorflowcompute.tfcompute as explained in the next section.




Complete Examples

The directory htf/models contains some example scripts.




Lennard-Jones with 1 Particle Type

graph = hoomd.htf.graph_builder(NN)
#use convenience rinv
r_inv = graph.nlist_rinv
p_energy = 4.0 / 2.0 * (r_inv**12 - r_inv**6)
#sum over pairwise energy
energy = tf.reduce_sum(p_energy, axis=1)
forces = graph.compute_forces(energy)
graph.save(force_tensor=forces, model_directory='/tmp/lj-model')
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Using a Graph in a Simulation

You may use a saved TensorFlow model via:

import hoomd, hoomd.md
import hoomd.htf as htf

...hoomd initialization code...
with htf.tfcompute(model_dir) as tfcompute:

    nlist = hoomd.md.nlist.cell()
    tfcompute.attach(nlist, r_cut=3)

    ...other hoomd code...

    hoomd.run(...)





where model_dir is the directory where the TensorFlow model was
saved, nlist is a hoomd neighbor list object and r_cut is the
maximum distance for to consider particles as being neighbors. nlist
is optional and is not required if your graph doesn’t use the nlist
object (you passed NN = 0 when building your graph).


Logging

The default logging level of Tensorflow is relatively noisy. You can reduce
the amount of logged statements via




Batching

If you used per-molecule positions or nlist in your graph, you can
either rely on hoomd-tf to find your molecules by traversing the bonds
in your system (default) or you can specify what are molecules in your
system. They are passed via attach(..., mol_indices=[[..]]). The
mol_indices are a, possibly ragged, 2D python list where each
element in the list is a list of atom indices for a molecule. For
example, [[0,1], [1]] means that there are two molecules with the
first containing atoms 0 and 1 and the second containing atom 1. Note
that the molecules can be different size and atoms can exist in multiple
molecules.

If you do not call graphbuilder.graph_builder.build_mol_rep()
while building your graph, you can
optionally split your batches to be smaller than the entire system. This
is set via the batch_size integer argument to tfcompute.tfcompute.attach().
This can help for high-memory simulations where you cannot spare the GPU memory to
have each tensor be the size of your system.




Bootstrapping Variables

If you have trained variables previously and would like to load them
into the current TensorFlow graph, you can use the bootstrap and
bootstrap_map arguments. bootstrap should be a checkpoint file
path or model directory path (latest checkpoint is used) containing
variables which can be loaded into your tfcompute graph. Your model will
be built, then all variables will be initialized, and then your
bootstrap checkpoint will be loaded and no variables will be reloaded
even if there exists a checkpoint in the model directory (to prevent
overwriting your bootstrap variables). bootstrap_map is an optional
additional argument that will have keys that are variable names in the
bootstrap checkpoint file and values that are names in the tfcompute
graph. This can be used when your variable names do not match up. Here
are two example demonstrating with and without a bootstrap_map:

Here’s an example that creates some variables that could be trained
offline without Hoomd. In this example, they just use their initial
values.

import tensorflow as tf

#make some variables
v = tf.Variable(8.0, name='epsilon')
s = tf.Variable(2.0, name='sigma')

#initialize and save them
saver = tf.train.Saver()
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver.save(sess, '/tmp/bootstrap/model')





We load them in the hoomd run script:

with hoomd.htf.tfcompute(model_dir,
    bootstrap='/tmp/bootstrap/model') as tfcompute:
    ...





Here’s how we would load them in the hoomd run script if we want to
change the names of the variables:

# here the pretrained variable parameters will replace variables with a different name
with hoomd.htf.tfcompute(model_dir,
    bootstrap='/tmp/bootstrap/model',
    bootstrap_map={'lj-epsilon':'epsilon', 'lj-sigma':'sigma'}) as tfcompute:
    ...








Bootstrapping Variables from Other Models

Here’s an example of bootstrapping where you train with Hoomd-TF and
then load the variables into a different model:

# build_models.py
import tensorflow as tf
import hoomd.htf as htf

def make_train_graph(NN, directory):
    # build a model that fits the energy to a linear term
    graph = htf.graph_builder(NN, output_forces=False)
    # get r
    nlist = graph.nlist[:, :, :3]
    r = graph.safe_norm(nlist, axis=2)
    # build energy model
    m = tf.Variable(1.0, name='m')
    b = tf.Variable(0.0, name='b')
    predicted_particle_energy = tf.reduce_sum(m * r + b, axis=1)
    # get energy from hoomd
    particle_energy = graph.forces[:, 3]
    # make them match
    loss = tf.losses.mean_squared_error(particle_energy, predicted_particle_energy)
    optimize = tf.train.AdamOptimizer(1e-3).minimize(loss)
    graph.save(model_directory=directory, out_nodes=[optimize])

def make_force_graph(NN, directory):
    # this model applies the variables learned in the example above
    # to compute forces
    graph = htf.graph_builder(NN)
    # get r
    nlist = graph.nlist[:, :, :3]
    r = graph.safe_norm(nlist, axis=2)
    # build energy model
    m = tf.Variable(1.0, name='m')
    b = tf.Variable(0.0, name='b')
    predicted_particle_energy = tf.reduce_sum(m * r + b, axis=1)
    forces = graph.compute_forces(predicted_particle_energy)
    graph.save(force_tensor=forces, model_directory=directory)
make_train_graph(64, 16, '/tmp/training')
make_force_graph(64, 16, '/tmp/inference')





Here is how we run the training model:

#run_train.py
import hoomd, hoomd.md
import hoomd.htf as htf


hoomd.context.initialize()

with htf.tfcompute('/tmp/training') as tfcompute:
    rcut = 3.0
    system = hoomd.init.create_lattice(unitcell=hoomd.lattice.sq(a=2.0),
                                       n=[8,8])
    nlist = hoomd.md.nlist.cell(check_period = 1)
    lj = hoomd.md.pair.lj(rcut, nlist)
    lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
    hoomd.md.integrate.mode_standard(dt=0.005)
    hoomd.md.integrate.nve(
        group=hoomd.group.all()).randomize_velocities(kT=0.2, seed=42)

    tfcompute.attach(nlist, r_cut=rcut)
    hoomd.run(100)





Load the variables trained in the training run into the model which
computes forces:

#run_inference.py
import hoomd, hoomd.md
import hoomd.htf as htf

hoomd.context.initialize()
with htf.tfcompute('/tmp/inference',
        bootstrap='/tmp/training') as tfcompute:
    rcut = 3.0
    system = hoomd.init.create_lattice(unitcell=hoomd.lattice.sq(a=2.0),
                                       n=[8,8])
    nlist = hoomd.md.nlist.cell(check_period = 1)
    #notice we no longer compute forces with hoomd
    hoomd.md.integrate.mode_standard(dt=0.005)
    hoomd.md.integrate.nve(
        group=hoomd.group.all()).randomize_velocities(kT=0.2, seed=42)

    tfcompute.attach(nlist, r_cut=rcut)
    hoomd.run(100)
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Utilities

There are a few convenience functions for plotting potential energies of pairwise
potentials and constructing CG mappings.


RDF

To compute an RDF, use graphbuilder.graph_builder.compute_rdf():

# set-up graph to compute energy
...
rdf = graph.compute_rdf([1,10], 'rdf', nbins=200)
graph.running_mean(rdf, 'avg-rdf')
# run the simulation
...
variables  = htf.load_variables(model_dir, ['avg-rdf'])
print(variables)








Pairwise Potential and Forces

To compute a pairwise potential, use
utils.compute_pairwise_potential():

...
r = numpy.arange(1, 10, 1)
potential, forces = htf.compute_pairwise_potential('/path/to/model', r, potential_tensor)
...








Biasing with EDS

To apply Experiment Directed
Simulation [https://www.tandfonline.com/doi/full/10.1080/08927022.2019.1608988]
biasing to a system, use utils.eds_bias():

eds_alpha = htf.eds_bias(cv, set_point=3.0, period=100)
eds_energy = eds_alpha * cv
eds_forces = graph.compute_forces(eds_energy)
graph.save('eds-graph', eds_forces)





Here,
htf.eds_bias(cv, set_point, period, learning_rate, cv_scale, name)
computes the lagrange multiplier/eds coupling that
are used to bias the simulation. It may be useful to also take the
average of eds_alpha so that you can use it in a subsequent
simulation:

avg_alpha = graph.running_mean(eds_alpha, name='avg-eds-alpha')
.....
# after simulation
vars = htf.load_variables('model/directory', ['avg-eds-alpha'])
print(vars['avg-eds-alpha'])








Trajectory Parsing

To process information from a trajectory, use
utils.run_from_trajectory():




Coarse-Graining


Find Molecules

To go from atom index to particle index, use the
utils.find_molecules():

# The method takes in a hoomd system as an argument.
...
molecule_mapping_index = hoomd.htf.find_molecules(system)
...








Sparse Mapping

The utils.sparse_mapping() method creates the necessary indices and
values for defining a sparse tensor in tensorflow that is a
mass-weighted \(M \times N\) mapping operator where \(M\) is the number of
coarse-grained particles and \(N\) is the number of atoms in the system. In
the following example,mapping_per_molecule is a list of \(k \times n\) matrices where
\(k\) is the number of coarse-grained sites for each molecule and \(n\) is the
number of atoms in the corresponding molecule. There should be one
matrix per molecule. Since the example is for a 1 bead mapping per
molecule the shape is \(1 \times n\). The ordering of the atoms should follow the
output from the find_molecules method. The variable
molecule_mapping_index is the output from
utils.find_molecules().

#The example is shown for 1 coarse-grained site per molecule.
...
molecule_mapping_matrix = numpy.ones([1, len(molecule_mapping_index[0])], dtype=np.int)
mapping_per_molecule = [molecule_mapping_matrix for _ in molecule_mapping_index]
cg_mapping = htf.sparse_mapping(mapping_per_molecule, \
                    molecule_mapping_index, system = system)
...








Center of Mass

utils.center_of_mass() maps the given positions according to
the specified mapping operator to coarse-grain site positions, while
considering periodic boundary conditions. The coarse grain site position
is placed at the center of mass of its constituent atoms.

...
mapped_position = htf.center_of_mass(graph.positions[:,:3], cg_mapping, system)
#cg_mapping is the output from the sparse_matrix(...) method and indicates how each molecule is mapped.
...








Compute Mapped Neighbor List

utils.compute_nlist() returns the neighbor list for a set of
mapped coarse-grained particles. In the following example, mapped_positions is
the mapped particle positions obeying the periodic boundary condition, as
returned by  utils.center_of_mass(), rcut is the cutoff
radius and NN is the number of nearest neighbors to be considered
for the coarse-grained system.

...
mapped_nlist= htf.compute_nlist(mapped_positions, rcut, NN, system)
...










Tensorboard

You can visualize your models with tensorboard. First, add
write_tensorboard=True to the htf.tfcompute.tfcompute constructor. This will
add a new directory called tensorboard to your model directory.

After running, you can launch tensorboard like so:

tensorboard --logdir=/path/to/model/tensorboard





and then visit http://localhost:6006 to view the graph.


Saving Scalars in Tensorboard

If you would like to save a scalar over time, like total energy or
training loss, you can use the Tensorboard functionality. Add scalars to
the Tensorboard summary during the build step:

tf.summary.scalar('total-energy', tf.reduce_sum(particle_energy))





and then add the write_tensorboard=True flag during the
htf.tfcompute.tfcompute initialization.
The period of tensorboard writes is controlled
by the save_period flag to the htf.tfcompute.tfcompute.attach() command. See
the Tensorboard section below for how to view the resulting scalars.




Viewing when TF is running on remote server

If you are running on a server, before launching tensorboard use this
ssh command to login:

ssh -L 6006:[remote ip or hostname]:6006 username@remote





and then you can view after launching on the server via your local web
browser.




Viewing when TF is running in container

If you are running docker, you can make this port available a few
different ways. The first is to get the IP address of your docker
container (google how to do this if not default), which is typically
172.0.0.1, and then visit http://172.0.0.1:6006 or equivalent if
you have a different IP address for your container.

The second option is to use port forwarding. You can add a port forward
flag, -p 6006:6006, when running the container which will forward
traffic from your container’s 6006 port to the host’s 6006 port. Again,
then you can visit http://localhost:6006 (linux) or
http://127.0.0.1:6006 (windows).

The last method, which usually works when all others fail, is to have
all the container’s traffic be on the host. You can do this by adding
the flag --net=host to the run command of the container. Then you
can visit http://localhost:6006.






Interactive Mode

Experimental, but you can trace your graph in realtime in a simulation.
Add both the write_tensorboard=True to the constructor and the
_debug_mode=True flag to attach command. You then open another
shell and connect by following the online instructions for interactive
debugging from Tensorboard [https://github.com/tensorflow/tensorboard/tree/master/tensorboard/plugins/debugger#the-debugger-dashboard].
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Docker Image for Development

To use the included docker image:

docker build -t hoomd-tf .





To run the container:

docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
 -v /insert/path/to/htf/:/srv/hoomd-blue/htf hoomd-tf bash





The cap--add and security-opt flags are optional and allow
gdb debugging. Install gdb and python3-dbg packages to use
gdb with the package.

Once in the container:

cd /srv/hoomd-blue && mkdir build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Debug\
    -DENABLE_CUDA=OFF -DENABLE_MPI=OFF -DBUILD_HPMC=off\
     -DBUILD_CGCMM=off -DBUILD_MD=on -DBUILD_METAL=off \
    -DBUILD_TESTING=off -DBUILD_DEPRECATED=off -DBUILD_MPCD=OFF
make -j2
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Change Log


v1.0.2 (2020-8-14)

Bug fixes


	EDS Bias was not using mean for computing offset


	EDS Bias was not resetting statistics correctly


	Removed stale test-cc directory that caused cmake errors







v1.0.1 (2020-7-27)

Bug fixes


	Prevented CPU overflow when nlist is too small (and added unit test)


	Adding check on mapping validity







v1.0 (2020-7-20)

JOSS Review

Hoomd-TF has been published as a peer-reviewed article [https://joss.theoj.org/papers/5d1323eadec82aabe86c65a403ff8f90] in the
Journal of Open Source Software (JOSS)

New Features


	Added pre-built molecular features


	Added MDAnalysis style selection for defining mapping operators




Enhancements


	Docs can now be built without HTF install


	mol batching performance is much better


	Simplified variable saving


	More example notebooks and reduced file sizes of example trajectories


	Supports dynamic boxes


	Better EDS bias naming


	Prevents accidentally computing forces from positions, instead of nlist


	Added guards against compiler mismatch


	Added sanity tests to prevent unsupported CPU/GPU modes


	Added benchmarking script


	Added check for nlist overflows on GPU


	Added check for mismatch on saving variables/tensors


	Fixed all compiler warnings


	Added Dockerfile for containerized use




Bug Fixes


	Empty tensorboard summaries no longer crash


	Prevented import issues with name clashes between packages and classes







v0.6 (2020-02-21)

Enhancements


	Migrated documentation to sphinx


	Added Jupyter notebook examples


	Various documentation improvements


	Added CUDA 10 Support







v0.5 (2019-10-17)

Bug Fixes


	Types are now correctly translated to TF







v0.4 (2019-09-25)

New Features


	Added experiment directed simulation biasing to htf.




Enhancements


	Added box dimension to computation graph (graph.box and graph.box_size)


	Can now wrap position derived distances with graph.wrap_vector


	Made it possible to specify period for out_nodes




Bug Fixes


	Fixed dangling list element in rev_mol_indices







v0.3 (2019-07-03)

Enhancements


	Batching by molecule now has a atom id to mol id/atom id look-up (rev_mol_indices)


	Version string is visible in package


	Example models now take an argument specifying where to save them


	When batching, atom sorting is automatically disabled


	compute_pairwise_potential now outputs force as well as potential




Bug Fixes


	Computing nlist in TF now correctly sorts when requested


	Fixed Mac OS specific issues for compiling against existing HOOMD-blue install


	Running mean computation variables are now marked as untrainable







v0.2 (2019-06-03)

New Features


	Added attach batch_size argument enabling batching of TF calls


	Can now batch by molecule, enabling selection/exclusion of molecules


	Added XLA option to improve TF speed


	Now possible to compile the plugin after hoomd-blue install


	Changed name of package to htf instead of tensorflow_plugin




Enhancements


	Changed output logging to only output TF items to the tf_manager.log and


	Log-level is now consistent with hoomd


	Added C++ unit tests skeleton in the same format as HOOMD-blue. Compile with -DBUILD_TESTING=ON to use.


	Switched to hoomd-blue cuda error codes


	Added MPI tests with domain decomposition


	Improved style consistency with hoomd-blue


	Cmake now checks for TF and hoomd versions while building hoomd-tf.







v0.1 (2019-04-22)


	Made Python packages actual dependencies.


	Switched to using hoomd-blue cuda error codes.


	Removed TaskLock from C++ code.


	Documentation updates


	Included license.


	User can now use specific hoomd forces in the hoomd2tf force mode.


	Added the ability to create a custom nlist.


	Made unit tests stricter and fixed some cuda synchronization bugs.


	Fixed TF GPU Compiling bug.


	Fixed ordering/masking error in mapping nlist and type of neighbor particles in nlist.


	Fixed a bug which caused a seg fault in nonlist settings.
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Known Issues

The following is a list of known issues. To report another issue,
please use the issue tracker [https://github.com/ur-whitelab/hoomd-tf/issues].


Using Positions

Hoomd re-orders positions to improve performance. If you are using CG
mappings that rely on ordering of positions, be sure to disable this:

c = hoomd.context.initialize()
c.sorter.disable()








Exploding Gradients

There is a bug in norms
(https://github.com/tensorflow/tensorflow/issues/12071) that somtimes
prevents optimizers to work well with TensorFlow norms. Note that this
is only necessary if you’re summing up gradients, like what is commonly
done in computing gradients in optimizers. This isn’t usually an issue
for just computing forces. There are three ways to deal with this:


Small Training Rates

When Training something like a Lennard-Jones potential or other 1/r
potential, high gradients are possible. You can prevent expoding
gradients by using small learning rates and ensuring variables are
initialized so that energies are finite.




Safe Norm

There is a workaround (graphbuilder.graph_builder.safe_norm()) in Hoomd-TF. There
is almost no performance penalty, so it is fine to replace tf.norm
with graphbuilder.graph_builder.safe_norm() throughout. This method adds a small
amount to all the norms though, so if you rely on some norms being zero
it will not work well.




Clipping Gradients

Another approach is to clip gradients instead of using safe_norm:

optimizer = tf.train.AdamOptimizer(1e-4)
gvs = optimizer.compute_gradients(cost)
capped_gvs = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gvs]
train_op = optimizer.apply_gradients(capped_gvs)








Neighbor Lists

Using a max-size neighbor list is non-ideal, especially in CG
simulations where density is non-uniform.
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htf

Details

HOOMD-blue plus TensorFlow for online machine learning in MD simulations.
Supports GPU and CPU execution.

Modules



	graph_builder

	tfarraycomm

	tfcompute

	tfmanager

	tfarraycomm

	utils
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graph_builder

Details


	
class graphbuilder.graph_builder(nneighbor_cutoff, output_forces=True, check_nlist=False)

	Build the TensorFlow graph that will be used during the HOOMD run.


	Parameters

	
	nneighbor_cutoff (int) – The maximum number of neigbhors to consider (can be 0)


	output_forces (bool) – True if your graph will compute forces to be used in TensorFlow


	check_nlist (bool) – True will raise error if neighbor
list overflows (nneighbor_cutoff too low)









	
build_mol_rep(MN)

	This creates mol_forces, mol_positions, and mol_nlist which have dimensions
mol_number x MN x 4 (mol_forces, mol_positions) and
? x MN x NN x 4 (mol_nlist) tensors batched by molecule, where MN
is the number of molecules. MN is determined at run time. The MN must
be chosen to be large enough to encompass all molecules. If your molecule
is 6 atoms and you chose MN=18, then the extra entries will be zeros. Note
that your input should be 0 based, but subsequent tensorflow data will be 1 based,
since 0 means no atom. The specification of what is a molecule
will be passed at runtime, so that it can be dynamic if desired.

To convert a mol_quantity to a per-particle quantity, call
scatter_mol_quanitity(mol_quantity)


	Parameters

	MN (int) – The number of molecules



	Returns

	None










	
compute_forces(energy, virial=None, positions=False, nlist=None)

	Computes pairwise or position-dependent forces (field) given
a potential energy function that computes per-particle
or overall energy


	Parameters

	
	energy (tensor) – The potential energy


	virial (bool) – Defaults to None. Virial contribution will be computed
if the graph outputs forces. Can be set manually instead. Note
that the virial term that depends on positions is not computed.


	positions (tensor) – Defaults to False. Particle positions tensor to use
for force calculations. If set to True, uses self.positions. If
set to False (default), no position dependent forces will be computed.
Only pairwise forces from neighbor list will be applied. If set to a
tensor, that tensor will be used instead of self.positions.


	nlist (tensor) – Defaults to None. Particle-wise neighbor list to use
for force calculations. If not specified, uses self.nlist.






	Returns

	The TF force tensor. Note that the virial part will be stored
as the class attribute virial and will be saved automatically.










	
compute_rdf(r_range, name, nbins=100, type_i=None, type_j=None, nlist=None, positions=None)

	
	Computes the pairwise radial distribution function, and appends

	the histogram tensor to the graph’s out_nodes.






	Parameters

	
	bins – The bins to use for the RDF


	name – The name of the tensor containing rdf. The name will be
concatenated with ‘-r’ to create a tensor containing the
r values of the rdf.


	type_i – Use this to select the first particle type.


	type_j – Use this to select the second particle type.


	nlist – Neighbor list to use for RDF calculation. By default
it will use self.nlist.


	positions – Defaults to self.positions. This tensor is only used
to get the origin particle’s type. So if you’re making your own,
just make sure column 4 has the type index.






	Returns

	Historgram tensor of the RDF (not normalized).










	
masked_nlist(type_i=None, type_j=None, nlist=None, type_tensor=None)

	Returns a neighbor list masked by the given particle type(s).


	Parameters

	
	type_i – Use this to select the first particle type.


	type_j – Use this to select a second particle type (optional).


	nlist – Neighbor list to mask. By default it will use self.nlist.


	type_tensor – An N x 1 tensor containing the type(s) of the nlist origin.
If None, particle types from self.positions will be used.






	Returns

	The masked neighbor list tensor.










	
nlist_rinv

	Returns an N x NN tensor of 1 / r for each neighbor






	
running_mean(tensor, name, batch_reduction='mean')

	Computes running mean of the given tensor


	Parameters

	
	tensor (tensor) – The tensor for which you’re computing running mean


	name (str) – The name of the variable in which the running mean will be stored


	batch_reduction (str) – If the hoomd data is batched by atom index,
how should the component tensor values be reduced? Options are
‘mean’ and ‘sum’. A sum means that tensor values are summed across
the batch and then a mean is taking between batches. This makes sense
for looking at a system property like pressure. A mean gives a mean
across the batch. This would make sense for a per-particle property.






	Returns

	A variable containing the running mean










	
static safe_div(numerator, denominator, delta=3e-06, **kwargs)

	Use this method to avoid nan forces if doing 1/r
or equivalent force calculations.
There are some numerical instabilities that can occur during learning
when gradients are propagated. The delta is problem specific.


	Parameters

	
	numerator (tensor) – The numerator.


	denominator (tensor) – The denominator.


	delta – Tolerance for magnitude that triggers safe division.






	Returns

	The safe division op (TensorFlow operation)










	
static safe_norm(tensor, delta=1e-07, **kwargs)

	There are some numerical instabilities that can occur during learning
when gradients are propagated. The delta is problem specific.
NOTE: delta of safe_div must be > sqrt(3) * (safe_norm delta)
See this TensorFlow issue <https://github.com/tensorflow/tensorflow/issues/12071>.


	Parameters

	
	tensor – the tensor over which to take the norm


	delta – small value to add so near-zero is treated without too much
accuracy loss.






	Returns

	The safe norm op (TensorFlow operation)










	
save(model_directory, force_tensor=None, virial=None, out_nodes=None, move_previous=True)

	Save the graph model to specified directory.


	Parameters

	
	model_directory – Multiple files will be saved, including a dictionary with
information specific to hoomd-tf and TF model files.


	force_tensor – The forces that should be sent to hoomd


	virial – The virial which should be sent to hoomd. If None and you called
compute_forces, then the virial computed from that
function will be saved.


	out_nodes – Any additional TF graph nodes that should be executed.
For example, optimizers, printers, etc. Each element of the
list can itself be a list where the first element is the node
and the second element is the period indicating how often to
execute it.






	Returns

	None










	
save_tensor(tensor, name, save_period=1)

	Saves a tensor to a variable


	Parameters

	
	tensor (tensor) – The tensor to save


	name (str) – The name of the variable which will be saved


	save_period (int) – How often to save the variable






	Returns

	None










	
wrap_vector(r)

	Computes the minimum image version of the given vector.


	Parameters

	r (tensor) – The vector to wrap around the HOOMD box.



	Returns

	The wrapped vector as a TF tensor
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tfarraycomm

Overview


	
class tfarraycomm.tf_array_comm(nparray, hoomd_context=<sphinx.ext.autodoc.importer._MockObject object>)

	Set up HOOMD context and interface with C++ memory.


	Parameters

	
	nparray – numpy array to share with the C++ process


	hoomd_context – HOOMD execution configuration
(defaults to hoomd.context.exec_conf)









	
getArray()

	Convert C++ array into a numpy array.


	Returns

	the converted numpy array










	
receive()

	Receives the array from the C++ class instance.






	
send()

	Sends the array to the C++ class instance.
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tfcompute

Overview

Details


	
class tensorflowcompute.tfcompute(tf_model_directory, log_filename='tf_manager.log', device=None, bootstrap=None, bootstrap_map=None, _debug_mode=False, _mock_mode=False, write_tensorboard=False, use_xla=False)

	TensorFlow Computations for HTF.


	Parameters

	
	tf_model_directory – Directory in which to save the TensorFlow model files.


	log_filename – Name to use for the TensorFlow log file.


	device – Device (GPU) on which to execute, if a specific one is desired.


	bootstrap – If set to a directory, will search for and
load a previously-saved model file


	bootstrap_map – A dictionary to be used when bootstrapping,
pairing old models’ tensor variable names with new ones.
Key is new name, value is older model’s.


	_deubug_mode – Set this to True to see more debug messages.


	_mock_mode – Set this to True to run a “fake” calculation
of forces that would be passed to the HOOMD simulation without applying them.


	write_tensorboard – If True, a tensorboard file will be written
in the tf_model_directory.


	use_xla – If True, enables the accelerated linear algebra library
in TensorFlow, which can be useful for large and complicated tensor operations.









	
attach(nlist=None, r_cut=0, save_period=1000, period=1, feed_dict=None, mol_indices=None, batch_size=None)

	Attaches the TensorFlow instance to HOOMD.
The main method of this class, this method sets up TensorFlow and
gets HOOMD ready to interact with it.


	Parameters

	
	nlist – The HOOMD neighbor list that will be used as the TensorFlow input.


	r_cut – Cutoff radius for neighbor listing.


	save_period – How often to save the TensorFlow data. Period here is measured by
how many times the TensorFLow model is updated. See period.


	period – How many HOOMD steps should pass before updating the TensorFlow model.
In combination with save_period, determines how many timesteps pass before
TensorFlow saves its data (slow). For example, with a save_period of 200,
a period of 4, TensorFlow will write to the tf_model_directory every 800
simulation steps.


	feed_dict – The dictionary keyed by tensor names and filled with corresponding values.
See feed_dict in __init__.


	mol_indices – Molecule indices for each atom,
identifying which molecule each atom belongs to.


	batch_size – The size of batches if we are using batching.
Cannot be used if molecule-wise batching is active.













	
finish_update(batch_index, batch_frac)

	Allow TF to read output and we wait for it to finish.


	Parameters

	
	batch_index – index of batch to be processed


	batch_frac – fractional batch index, i.e.
batch_frac = batch_index / len(input)













	
get_forces_array()

	Retrieve forces array as numpy array






	
get_nlist_array()

	Retrieve neighbor list array as numpy array






	
get_positions_array()

	Retrieve positions array as numpy array






	
get_virial_array()

	Retrieve virial array as numpy array






	
rcut()

	Define the cutoff radius used in the neighbor list.
Adapted from hoomd/md/pair.py






	
scalar4_vec_to_np(array)

	Convert from scalar4 dtype to numpy array
:param array: the scalar4 array to be processed






	
set_reference_forces(*forces)

	Sets the HOOMD reference forces to be used by TensorFlow.
See C++ comments in TensorFlowCompute.h






	
shutdown_tf()

	Shut down the TensorFlow instance.
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tfmanager

Overview


	
class tfmanager.TFManager(graph_info, device, q, positions_buffer, nlist_buffer, forces_buffer, box_buffer, virial_buffer, log_filename, dtype, debug, write_tensorboard, use_feed, bootstrap, primary, bootstrap_map, save_period, use_xla, mol_indices)

	TFManager manages TensorFlow training and coordinates communication with HOOMD.
Sets up the TensorFlow graph, sets placeholder variable values, updates and
saves the TensorFlow graph, passes output forces back to HOOMD, and
writes TensorBoard files.


	Parameters

	
	graph_info – The structure of the TensorFlow graph, passed as a dict.
See tfcompute.py


	device – Which device to run on.
See tfcompute.py


	q – Threading queue that is used during execution of TensorFlow.


	positions_buffer – Buffer where particle positions are stored


	nlist_buffer – Address of the neighbor list tensor


	box_buffer – Address of the box tensor


	forces_buffer – Address of the forces tensor


	virial_buffer – Address of the virial tensor


	log_filename – Name of the file to output tensorflow logs


	dtype – Data type for tensor values, e.g. int32, float32, etc


	debug – True to run TensorFlow in debug mode


	write_tensorboard – Whether to output a tensorboard file


	use_feed – Whether or not to use a feed dictionary of tensor values


	bootstrap – Location of previously-trained model files to load, otherwise None


	primary – Whether this is the ‘primary’ instance of TFManager. Only one instance
writes logs and saves model files.


	bootstrap_map – A dictionary to be used when bootstrapping,
pairing old models’ tensor variable names with new ones.
Key is new name, value is older model’s.


	save_period – How often to save the TensorFlow data. Period here is measured by
how many times the TensorFLow model is updated. See tfcompute.py.


	use_xla – If True, enables the accelerated linear algebra library in TensorFlow,
which can be useful for large and complicated tensor operations.


	mol_indices – The molecucule indices, if doing mol batch (None otherwise)









	
start_loop()

	start_loop method of tfmanager.
Prepares GPU for execution, gathers trainable variables,
sets up model saving, loads pre-trained variables, sets
up tensorboard if requested and parses feed_dicts.
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tfarraycomm

Overview


	
class tfarraycomm.tf_array_comm(nparray, hoomd_context=<sphinx.ext.autodoc.importer._MockObject object>)

	Set up HOOMD context and interface with C++ memory.


	Parameters

	
	nparray – numpy array to share with the C++ process


	hoomd_context – HOOMD execution configuration
(defaults to hoomd.context.exec_conf)









	
getArray()

	Convert C++ array into a numpy array.


	Returns

	the converted numpy array










	
receive()

	Receives the array from the C++ class instance.






	
send()

	Sends the array to the C++ class instance.
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utils

Overview

This module contains various utility functions that are used throughout the htf module.
These are imported automatically when htf is imported.

Details


	
utils.center_of_mass(positions, mapping, box_size, name='center-of-mass')

	Comptue mapping of the given positions (N x 3) and mapping (M x N)
considering PBC. Returns mapped particles.
:param positions: The tensor of particle positions
:param mapping: The coarse-grain mapping used to produce the particles in system
:param box_size: A list contain the size of the box [Lx, Ly, Lz]
:param name: The name of the op to add to the TF graph






	
utils.compute_nlist(positions, r_cut, NN, box_size, sorted=False)

	Compute particle pairwise neighbor lists.


	Parameters

	
	positions – Positions of the particles


	r_cut – Cutoff radius (HOOMD units)


	NN – Maximum number of neighbors per particle


	box_size – A list contain the size of the box [Lx, Ly, Lz]


	sorted – Whether to sort neighbor lists by distance






	Returns

	An [N X NN X 4] tensor containing neighbor lists of all
particles and index










	
utils.compute_pairwise_potential(model_directory, r, potential_tensor_name, checkpoint=-1, feed_dict={})

	Compute the pairwise potential at r for the given model.


	Parameters

	
	model_directory – The model directory


	r – A 1D grid of points at which to compute the potential.


	potential_tensor_name – The tensor containing potential energy.


	checkpoint – Which checkpoint to load. Default is -1, which loads
latest checkpoint.
An integer indicates loading
from the model directory. If you pass a string, it is interpreted
as a path.


	feed_dict – Allows you to add any other placeholder values that need
to be added to compute potential in your model






	Returns

	A tuple of 1D arrays. First is the potentials corresponding to the
pairwise distances in r, second is the forces.










	
utils.eds_bias(cv, set_point, period, learning_rate=1, cv_scale=1, name=None)

	This method computes and returns the Lagrange multiplier/EDS coupling constant (alpha)
to be used as the EDS bias in the simulation.


	Parameters

	
	cv – The collective variable which is biased in the simulation


	set_point – The set point value of the collective variable.
This is a constant value which is pre-determined by the user and unique to each cv.


	period – Time steps over which the coupling constant is updated.
HOOMD time units are used. If period=100 alpha will be updated each 100 time steps.


	learninig_rate – Learninig_rate in the EDS method.


	cv_scale – Used to adjust the units of the bias to HOOMD units.


	name – Name used as prefix on variables.






	Returns

	Alpha, the EDS coupling constant.










	
utils.find_molecules(system)

	Given a hoomd system, return a mapping from molecule index to particle index.
This is a slow function and should only be called once.


	Parameters

	system – The molecular system in HOOMD.



	Returns

	A list of length L (number of molecules) whose elements are lists of atom indices










	
utils.force_matching(mapped_forces, calculated_cg_forces, learning_rate=0.001)

	This will minimize the difference between the mapped forces
and calculated CG forces using the Adam oprimizer.


	Parameters

	
	mapped_forces (tensor) – A tensor with shape M x 3 where M is number
of CG beads in the system. These are forces mapped from an all
atom system.


	calculated_cg_forces (tensor) – A tensor with shape M x 3 where M is
number of CG beads in the system. These are CG forces estimated
using a function or a basis set.


	learning_rate (float) – The learning_rate for optimization






	Returns

	optimizer, cost










	
utils.load_variables(model_directory, names, checkpoint=-1, feed_dict={})

	Adds variables from model_directory to the TF graph loaded from a checkpoint,
optionally other than the most recent one, or setting values with a feed dict.


	Parameters

	
	model_directory – Directory from which to load model variables.


	names – names of TensorFlow variables to load


	checkpoint – checkpoint number of the trained model to load from.
Default value is -1 for most recently saved model.


	feed_dict – optionally, use a feed dictionary to populate the model













	
utils.matrix_mapping(molecule, beads_distribution)

	
	This will create a M x N mass weighted mapping matrix where M is the number

	of atoms in the molecule and N is the number of mapping beads.






	Parameters

	
	molecule – This is atom selection in the molecule (MDAnalysis Atoms object).


	beads_distribution – This is a list of beads distribution lists, Note that








each list should contain the atoms as strings just like how they appear in the topology file.


	Returns

	An array of M x N.










	
utils.mol_angle(mol_positions, type_i, type_j, type_k)

	This method calculates the bond angle given three atoms batched by molecule


	mol_positions

	Positions tensor of atoms batched by molecules. Can be created by calling build_mol_rep()
method in graphbuilder



	type_i

	Index of the first atom (int type)



	type_j

	Index of the second atom (int type)



	type_k

	Index of the third atom (int type)






	angles

	Tensor containing bond angles










	
utils.mol_bond_distance(mol_positions, type_i, type_j)

	This method calculates the bond distance given two atoms batched by molecule


	mol_positions

	Positions tensor of atoms batched by molecules. Can be created by calling build_mol_rep()
method in graphbuilder



	type_i

	Index of the first atom (int type)



	type_j

	Index of the second atom (int type)






	v_ij

	Tensor containing bond distances










	
utils.mol_dihedral(mol_positions, type_i, type_j, type_k, type_l)

	This method calculates the dihedral angle given four atoms batched by molecule


	mol_positions

	Positions tensor of atoms batched by molecules. Can be created by calling build_mol_rep()
method in graphbuilder



	type_i

	Index of the first atom (int type)



	type_j

	Index of the second atom (int type)



	type_k

	Index of the third atom (int type)



	type_l

	Index of the fourth atom (int type)






	dihedrals

	Tensor containing dihedral angles










	
utils.run_from_trajectory(model_directory, universe, selection='all', r_cut=10.0, period=10, feed_dict={})

	This will process information from a trajectory and
run the user defined model on the nlist computed from the trajectory.


	Parameters

	
	model_directory (string) – The model directory


	universe – The MDAnalysis universe


	selection (string) – The atom groups to extract from universe


	r_cut (float) – The cutoff raduis to use in neighbor list
calculations


	period (int) – Frequency of reading the trajectory frames


	feed_dict (dict) – Allows you to add any other placeholder values
that need to be added to compute potential in your model













	
utils.sparse_mapping(molecule_mapping, molecule_mapping_index, system=None)

	This will create the necessary indices and values for
defining a sparse tensor in
tensorflow that is a mass-weighted M x N mapping operator.


	Parameters

	
	molecule_mapping – This is a list of L x M matrices, where M is the number
of atoms in the molecule and L is the number of coarse-grain
sites that should come out of the mapping.
There should be one matrix per molecule.
The ordering of the atoms should follow
what is defined in the output from find_molecules


	molecule_mapping_index – This is the output from find_molecules.
A list of length L (number of molecules) whose elements are lists of atom indices


	system – The hoomd system. This is used to get mass values
for the mapping, if you would like to
weight by mass of the atoms.






	Returns

	A sparse tensorflow tensor of dimension N x N,
where N is number of atoms
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