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This plugin enables the use of TensorFlow in a HOOMD-blue simulation

HOOMD-TF can be used for a variety of tasks such as online force-matching, online machine learning in HOOMD-
blue simulations, and arbitrary collective variable calculations using TensorFlow tensor operations. Because both
HOOMD-blue and TensorFlow are GPU-accelerated, HOOMD-TF was designed with speed in mind, and minimizes
latency with a GPU-GPU communication scheme. Of particular interest, HOOMD-TF allows for online machine
learning with early termination, rather than the more tradditional batch learning approach for MD+ML.

HOOMD-TF includes several utility functions as convenient built-ins, such as:

• RDF calculation

• EDS Biasing (See this paper)

• Coarse-Grained simulation force matching

In addition to all these, the TensorFlow interface of HOOMD-TF makes implementing arbitrary ML models as easy
as it is in TensorFlow, by exposing the HOOMD-blue neighbor list and particle positions to TensorFlow. This enables
GPU-accelerated tensor calculations, meaning arbitrary collective variables can be treated in the TensorFlow model
framework, as long as they can be expressed as tensor operations on particle positions or neighbor lists.

Table of Contents 1

https://www.tandfonline.com/doi/full/10.1080/08927022.2019.1608988


HOOMD-TF, Release 1.0.2

2 Table of Contents



CHAPTER 1

Citation
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Journal of Open Source Software doi: 10.21105/joss.02367
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CHAPTER 2

Tutorial

See example notebooks here to learn about what Hoomd-TF can do.

2.1 Quickstart Tutorial

Here’s an example of how you use Hoomd-TF. To compute a 1 / r pairwise potential:

import hoomd, hoomd.md
import hoomd.htf as htf
import tensorflow as tf

########### Graph Building Code ###########
graph = htf.graph_builder(64) # max neighbors = 64
pair_energy = graph.nlist_rinv # nlist_rinv is neighbor 1 / r
particle_energy = tf.reduce_sum(pair_energy, axis=1) # sum over neighbors
forces = graph.compute_forces(particle_energy) # compute forces
graph.save('my_model', forces)

########### Hoomd-Sim Code ################
hoomd.context.initialize()
# this will start TensorFlow, so it goes
# in a with statement for clean exit
with htf.tfcompute('my_model') as tfcompute:

# create a square lattice
system = hoomd.init.create_lattice(unitcell=hoomd.lattice.sq(a=4.0),

n=[3,3])
nlist = hoomd.md.nlist.cell()
hoomd.md.integrate.mode_standard(dt=0.005)
hoomd.md.integrate.nve(group=hoomd.group.all())
tfcompute.attach(nlist, r_cut=3.0)
hoomd.run(1e3)

This creates a computation graph whose energy function is 2 / r and also computes forces and virial for the sim-
ulation. The 2 is because the neighborlists in Hoomd-TF are full neighborlists (double counted). The Hoomd-blue
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code starts a simulation of a 9 particle square lattice and simulates it for 1000 timesteps under the potential defined
in our Hoomd-TF model. The general process of using Hoomd-TF is to build a TensorFlow computation graph, load
the graph, and then attach the graph. See Building the Graph and Using a Graph in a Simulation for a more detailed
description. Or see a complete set of Jupyter Notebook tutorials.

2.2 Contributor Code of Conduct

2.2.1 Introduction

All contributors to this project are expected to follow the code of conduct detailed in this document at all times when
engaging with or discussing the HOOMD-TF project. This includes public/private mailing lists, issue tracker threads,
blogs, personal websites, social media, and any other forms of communication, in-person or otherwise.

This code of conduct is expected to be followed by any and all participants, whether or not they are affiliated with the
White Laboratory, whether or not they claim affiliation with HOOMD-TF, including when representing HOOMD-TF
in any capacity.

This code of conduct is not exhaustive and may be subject to changes and improvements in the future. It is meant
to foster an environment of collaboration and respect. In order to maintain a respectful community, please follow the
intent of this page as much as the literal writing.

2.2.2 Specific Guidelines

We, the contributors and participants, aim to:

1. Be welcoming. Any and all who are willing and able to contribute to this project should feel welcome to participate.
To this end, we encourage the use of public communication such as GitHub issue tracking as much as possible, to
ensure those who join later can benefit from any useful discussion.

2. Be nice. We strive to avoid assigning ill intent and assume the best of others first. We should be patient with
newcomers and avoid talking down to anyone. We should never allow personal negative feelings to turn into an attack
on someone else’s character or work. A negative environment is counter-productive and just not pleasant. In particular,
violence, threats of violence, unwelcome personal advances, insults, and sexist or racist comments or jokes are entirely
unwelcome, as is encouragement of any of these.

3. Be humble. Criticisms of code are not personal and should be taken on good faith. Any improvement is good.

4. Be patient. Everyone has different levels of experience, and a willingness to learn should be met with a willingness
to teach. Not everyone is obligated to answer every question in-depth, but no one should be ignored or barred from
helping because of a lack of experience.

5. Be transparent. Since this is a community project, new users and developers should be able to understand how and
why it works the way it does. Contributors should be willing to answer questions about their work, and should follow
the documentation style to ensure a smooth learning curve.

6. Be inclusive. Discrimination based on age, disability, ethnicity, familial status, gender identity, nationality, religion,
sex, sexual orientation, or any legally-protected group will not be tolerated.

2.2.3 Reporting Issues

Issues can be reported via GitHub. When opening an issue, please be as specific as possible, and provide a way to
replicate your issue so it can be addressed readily.

6 Chapter 2. Tutorial

https://nbviewer.jupyter.org/github/ur-whitelab/hoomd-tf/tree/master/examples/
https://github.com/ur-whitelab
https://github.com/ur-whitelab/hoomd-tf/issues/


HOOMD-TF, Release 1.0.2

2.2.4 Contributing

Contributions are welcome and can be submitted by opening a pull request on our GitHub. As with reporting an issue,
pull requests for contributions should be as specific as possible for smooth integration into the codebase. Please ensure
that all tests pass before opening a pull request. If your PR includes new functionality, please also include unit testing
for it, following the testing and documentation framework (see here). A contribution PR should include:

1. What the contribution is meant to address.

2. How to run any new unit tests (if applicable).

2.3 Installation Guide

2.3.1 Compiling

Prerequisites

The following packages are required to compile:

tensorflow < 2.0
hoomd-blue == 2.5.2 (for GPU)
hoomd-blue >= 2.5.2 (for CPU)
numpy
tbb-devel (only for hoomd-blue 2.8 and above)

tbb-devel is required for hoomd-blue 2.8 or above when using the hoomd-blue conda release. It is not automatically
installed when installing hoomd-blue, so use conda install -c conda-forge tbb-devel to install. The
Tensorflow version should be any Tensorflow 1 release. The higher versions, like 1.14, 1.15, will give lots of warnings
about migrating code to Tensorflow 2.0. It is recommended you install via pip:

pip install tensorflow-gpu==1.15.0

Python and GCC requirements

If you install tensorflow with pip, as recommended, this provides a pre-built version of tensorflow which has specific
GCC and Python versions. When you compile hoomd-tf, these must match what is found by cmake. So if your version
of tensorflow used gcc-7x, then you must have gcc-7x available on your machine. The cmake script in hoomd-tf will
check for this and tell you if they do not match.

Simple Compiling

Install hoomd-blue and Tensorflow by your preferred method. If you want to install hoomd-blue without GPU support,
you can just use the conda release via conda install -c conda-forge hoomd==2.5.2. You should then
similarly use the CPU version of Tensorflow (pip install tensorflow==1.15). If you would like GPU
support, compile hoomd-blue using their instructions. Remember that pip is recommended for installing Tensorflow.
Here are steps after installing hoomd-blue and tensorflow

git clone https://github.com/ur-whitelab/hoomd-tf
cd hoomd-tf && mkdir build && cd build
CXX=g++ CC=gcc cmake ..
make install

2.3. Installation Guide 7
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That’s it! Check your install by running python htf/test-py/test_sanity.py. If you have installed with
GPU support, also check with python htf/test-py/_test_gpu_sanity.py.

Compiling with Hoomd-Blue

Use this method if you need to compile with developer flags on or other special requirements.

git clone --recursive https://bitbucket.org/glotzer/hoomd-blue hoomd-blue

We typically use v2.5.2 of hoomd-blue

cd hoomd-blue && git checkout tags/v2.5.2

Now we put our plugin in the source directory with a softlink:

git clone https://github.com/ur-whitelab/hoomd-tf
ln -s $HOME/hoomd-tf/htf $HOME/hoomd-blue/hoomd

Now compile (from hoomd-blue directory). Modify options for speed if necessary. Set build type to DEBUG if you
need to troubleshoot.

mkdir build && cd build
CXX=g++ CC=gcc cmake .. -DCMAKE_BUILD_TYPE=Release \
-DENABLE_CUDA=ON -DENABLE_MPI=OFF\
-DBUILD_HPMC=off -DBUILD_CGCMM=off -DBUILD_MD=on\
-DBUILD_METAL=off -DBUILD_TESTING=off -DBUILD_DEPRECATED=off -DBUILD_MPCD=OFF \
-DCMAKE_INSTALL_PREFIX=`python -c "import site; print(site.getsitepackages()[0])"`

Now compile with make:

make

Option 1: Put build directory on your python path:

export PYTHONPATH="$PYTHONPATH:`pwd`"

Option 2: Install in your python site-packages

make install

Conda Environments

If you are using a conda environment, you may need to force cmake to find your python environment. This is rare,
we only see it on our compute cluster which has multiple conflicting version of python and conda. The following
additional flags can help with this:

export CMAKE_PREFIX_PATH=/path/to/environment
CXX=g++ CC=gcc cmake .. \
-DPYTHON_INCLUDE_DIR=$(python -c "from distutils.sysconfig import get_python_inc;
→˓print(get_python_inc())") \
-DPYTHON_LIBRARY=$(python -c "import distutils.sysconfig as sysconfig;
→˓print(sysconfig.get_config_var('LIBDIR'))") \
-DPYTHON_EXECUTABLE=$(which python) \
-DCMAKE_BUILD_TYPE=Release -DENABLE_CUDA=ON -DENABLE_MPI=OFF -DBUILD_HPMC=off -DBUILD_
→˓CGCMM=off -DBUILD_MD=on \

(continues on next page)
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(continued from previous page)

-DBUILD_METAL=off -DBUILD_TESTING=off -DBUILD_DEPRECATED=off -DBUILD_MPCD=OFF \
-DCMAKE_INSTALL_PREFIX=`python -c "import site; print(site.getsitepackages()[0])"`

Updating Compiled Code

If you are developing frequently, add the build directory to your python path instead of make install (only works with
hoomd-blue compiled). Then if you modify C++ code, only run make (not cmake). If you modify python, just copy
over py files (htf/*py to build/hoomd/htf).

MBuild Environment

If you are using mbuild, please follow these additional install steps:

conda install numpy cython
pip install requests networkx matplotlib scipy pandas plyplus lxml mdtraj oset
conda install -c omnia -y openmm parmed
conda install -c conda-forge --no-deps -y packmol gsd
pip install --upgrade git+https://github.com/mosdef-hub/foyer git+https://github.com/
→˓mosdef-hub/mbuild

2.3.2 HPC Installation

These are instructions for our group’s cluster (BlueHive), and not for general users. Feeling Lucky? Try this for quick
results

module load cmake gcc/7.3.0 cudnn/10.0-7.5.0 anaconda3/2019.10
export PYTHONNOUSERSITE=True
conda create -n hoomd-tf python=3.7
source activate hoomd-tf
export CMAKE_PREFIX_PATH=/path/to/environment
python -m pip install tensorflow-gpu==1.15.0
conda install -c conda-forge hoomd==2.5.2
git clone https://github.com/ur-whitelab/hoomd-tf
cd hoomd-tf && mkdir build && cd build
CXX=g++ CC=gcc cmake .. \

-DPYTHON_INCLUDE_DIR=$(python -c "from distutils.sysconfig import get_python_inc;
→˓print(get_python_inc())") \
-DPYTHON_LIBRARY=$(python -c "import distutils.sysconfig as sysconfig;

→˓print(sysconfig.get_config_var('LIBDIR'))") \
-DPYTHON_EXECUTABLE=$(which python)

make install
cd .. && python htf/test-py/test_sanity.py

Here are the more detailed steps. Clone the hoomd-tf repo and then follow these steps:

Load the modules necessary:

module load cmake gcc/7.3.0 cudnn/10.0-7.5.0 anaconda3/2019.10

Set-up virtual python environment ONCE to keep packages isolated.

2.3. Installation Guide 9
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conda create -n hoomd-tf python=3.7
source activate hoomd-tf
python -m pip install tensorflow-gpu==1.15.0

Then whenever you login and have loaded modules:

source activate hoomd-tf

Continue following the compling steps below to complete install. The simple approach is recommended but use the
following different cmake step

export CMAKE_PREFIX_PATH=/path/to/environment
CXX=g++ CC=gcc cmake ..

If using the hoomd-blue compilation, use the following different cmake step

export CMAKE_PREFIX_PATH=/path/to/environment
CXX=g++ CC=gcc cmake .. \
-DPYTHON_INCLUDE_DIR=$(python -c "from distutils.sysconfig import get_python_inc;
→˓print(get_python_inc())") \
-DPYTHON_LIBRARY=$(python -c "import distutils.sysconfig as sysconfig;
→˓print(sysconfig.get_config_var('LIBDIR'))") \
-DPYTHON_EXECUTABLE=$(which python) \
-DCMAKE_BUILD_TYPE=Release -DENABLE_CUDA=ON -DENABLE_MPI=OFF -DBUILD_HPMC=off -DBUILD_
→˓CGCMM=off -DBUILD_MD=on \
-DBUILD_METAL=off -DBUILD_TESTING=off -DBUILD_DEPRECATED=off -DBUILD_MPCD=OFF \
-DCMAKE_INSTALL_PREFIX=`python -c "import site; print(site.getsitepackages()[0])"`\
-DNVCC_FLAGS="-ccbin /software/gcc/7.3.0/bin"

2.3.3 Optional Dependencies

Following packages are optional: .. code:: bash

MDAnalysis

utils.run_from_trajectory uses MDAnalysis for trajectory parsing

2.4 Unit Tests

You can run the unit tests directly via python htf/test-py/test_tensorflow.py, python htf/
test-py/test_utils.py, etc. For convenience, you can also install the pyest package and run the following
from the root HOOMD-TF directory:

pytest htf/test-py/

2.5 Benchmarking

The benchmark.py script in the htf/benchmarking directory is a convenience script for checking benchmark
results. Example use syntax is shown below. This will run a benchmark trial with 10000 Lennard-Jones particles
with HOOMD-blue in GPU configuration, and save the results as a .txt file in the current working directory. The first
argument should be an integer for the number of particles to simulate. The second should be either “gpu” or “cpu”
to indicate the execution mode, and the third indicates where to save the results. Note that large systems may take
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some time, as the HOOMD benchmarking utility runs five repeats of a 50,000 timestep simulation with 6,000 steps of
warmup each time. In order to run GPU profiling, make sure you have compiled for GPU (see Compiling).

python htf/benchmarking/benchmark.py 10000 gpu $(pwd)

2.6 Building the Graph

To construct a graph, create a graphbuilder.graph_builder instance:

import hoomd.htf as htf
graph = htf.graph_builder(NN, output_forces)

where NN is the maximum number of nearest neighbors to consider (can be 0). This is an upper-bound, so choose a
large number. If you are unsure, you can guess and add check_nlist = True. This will cause the program to
halt if you choose too low. output_forces indicates if the graph will output forces to use in the simulation. After
building the graph, it will have five tensors as attributes that can be used when constructing the TensorFlow graph:
nlist, positions, box, box_size, and forces:

• nlist is an N x NN x 4 tensor containing the nearest neighbors. An entry of all zeros indicates that less than NN
nearest neighbors where present for a particular particle. The 4 right-most dimensions are x,y,z and w, which
is the particle type. Particle type is an integer starting at 0. Note that the x,y,z values are a vector originating
at the particle and ending at its neighbor.

• positions is an N x 4 tensor of particle positions (x,y,z) and type.

• forces is an N x 4 tensor that is only available if the graph does not output forces (via
output_forces=False).

• box is a 3x3 tensor containing the low box coordinate, high box coordinate, and then tilt factors. box_size
contains just the box length in each dimension.

2.6.1 Molecule Batching

It may be simpler to have positions or neighbor lists or forces arranged by molecule. For example, you may want
to look at only a particular bond or subset of atoms in a molecule. To do this, you can call graphbuilder.
graph_builder.build_mol_rep(), whose argument MN is the maximum number of atoms in a molecule.
This will create the following new attributes: mol_positions, mol_nlist, and mol_forces (if your graph
has output_forces=False). These new attributes are dimension M x MN x ... where M is the number of
molecules and MN is the atom index within the molecule. If your molecule has fewer than MN atoms, extra entries will
be zeros. You can defnie a molecule to be whatever you want, and atoms need not be only in one molecule. Here’s an
example to compute a water angle, where we assume that the oxygens are the middle atom:

import hoomd.htf as htf
graph = graph_builder(0)
graph.build_mol_rep(3)
# want slice for all molecules (:)
# want h1 (0), o (1), h2(2)
# positions are x,y,z,w. We only want x,y z (:3)
v1 = graph.mol_positions[:, 2, :3] - graph.mol_positions[:, 1, :3]
v2 = graph.mol_positions[:, 0, :3] - graph.mol_positions[:, 1, :3]
# compute per-molecule dot product and divide by per molecule norm
c = tf.einsum('ij,ij->i', v1, v2) / tf.norm(v1, axis=1) / tf.norm(v2 axis=1)
angles = tf.math.acos(c)
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2.6.2 Computing Forces

If your graph is outputting forces, you may either compute forces and pass them to graphbuilder.
graph_builder.save() or have them computed via automatic differentiation of a potential energy. Call
graphbuilder.graph_builder.compute_forces() with the argument energy, which can be either
a scalar or a tensor which depends on nlist and/or positions. A tensor of forces will be returned as∑︀

𝑖(
−𝜕𝐸
𝜕𝑛𝑖

)− 𝑑𝐸
𝑑𝑝 , where the sum is over the neighbor list. For example, to compute a 1/𝑟 potential:

graph = htf.graph_builder(N - 1)
#remove w since we don't care about types
nlist = graph.nlist[:, :, :3]
#get r
r = tf.norm(nlist, axis=2)
#compute 1. / r while safely treating r = 0.
# halve due to full nlist
rij_energy = 0.5 * graph.safe_div(1, r)
#sum over neighbors
energy = tf.reduce_sum(rij_energy, axis=1)
forces = graph.compute_forces(energy)

Notice that in the above example that we have used the graphbuilder.graph_builder.safe_div()
method, which allows us to safely treat a 1/0, which can arise because nlist contains 0s for when fewer than
NN nearest neighbors are found.

Note: because nlist is a full neighbor list, you should divide by 2 if your energy is a sum of pairwise energies.

2.6.3 Neighbor lists

As mentioned above, graphbuilder.graph_builder contains a member called nlist, which is an N x
NN x 4 neighobr list tensor. You can ask for masked versions of this with graphbuilder.graph_builder.
masked_nlist() where type_i and type_j are optional integers that specify the type of the origin (type_i)
or neighobr (type_j). The nlist argument allows you to pass in your own neighbor list and type_tensor
allows you to specify your own list of types, if different than what is given by hoomd-blue. You can also access
nlist_rinv which gives a pre-computed 1 / r (dimension N x NN).

2.6.4 Virial

The virial is computed and added to the graph if you use the graphbuilder.graph_builder.
compute_forces() method and your energy has a non-zero derivative with respect to nlist. You may also
explicitly pass the virial when saving, or pass None to remove the automatically-calculated virial.

2.6.5 Finalizing the Graph

To finalize and save your graph, you must call graphbuilder.graph_builder.save() with the following
arguments:

• directory: where to save your TensorFlow model files

• force_tensor (optional): your computed forces, either as computed by your graph or output from
graphbuilder.graph_builder.compute_forces(). This should be an N x 4 tensor with the 4th
column indicating per-particle potential energy.

• virial (optional): the virial tensor to save. The virial should be an N x 3 x 3 tensor.
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• out_nodes (optional): If your graph is not outputting forces, then you must provide a tensor or list of tensors
which will be computed at each timestep.

2.6.6 Saving Data

Using variables is the best way to save computed quantities while running a compute graph. See the Loading Variables
section for loading them. You can save a tensor value to a variable using graphbuilder.graph_builder.
save_tensor(). Here is an example of computing the LJ potential and saving the system energy at each step.

# set-up graph
graph = htf.graph_builder(NN)
# compute LJ potential
inv_r6 = graph.nlist_rinv**6
p_energy = 4.0 / 2.0 * (inv_r6 * inv_r6 - inv_r6)
energy = tf.reduce_sum(p_energy)
# save the tensor
graph.save_tensor(energy, 'lj-energy')
forces = graph.compute_forces(energy)
# save the graph
graph.save(force_tensor=forces, model_directory=directory)

Often you may want a running mean of a variable, for which there is a built-in, graphbuilder.
graph_builder.running_mean():

# set-up graph to compute energy
...
# we name our variable avg-energy
graph.running_mean(energy, 'avg-energy')
# run the simulation
...

2.6.7 Variables and Restarts

In TensorFlow, variables are generally trainable parameters. They are required parts of your graph when doing learn-
ing. Each save_period (set as arg to tensorflowcompute.tfcompute.attach()), they are written to
your model directory. Note that when a run is started, the latest values of your variables are loaded from your
model directory. If you are starting a new run but you previously ran your model, the old variable values will be
loaded. To prevent this unexpectedly loading old checkpoints, if you run graphbuilder.graph_builder.
save(), it will move out all old checkpoints. This behavior means that if you want to restart, you should not re-run
graphbuilder.graph_builder.save() in your restart script, nor should you pass move_previous =
False as a parameter if you re-run graphbuilder.graph_builder.save().

Variables are also how you save data as seen above. If you are doing training and also computing other variables, be
sure to set your variables which you do not want to be affected by training optimization to be trainable=False
when constructing them.

2.6.8 Loading Variables

You may load variables after the simulation using the following syntax:

variables = htf.load_variables(model_dir, ['avg-energy'])

The utils.load_variables() is general and can be used to load trained, non-trained, or averaged variables. It
is important to name your custom variables so they can be loaded using this function.
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2.6.9 Period of out nodes

You can modify how often tensorflow is called via tensorflowcompute.tfcompute.attach(). You can
also have more granular control of operations/tensors passed to out_nodes by changing the type to a list whose first
element is the tensor and the second argument is the period at which it is computed. For example:

...graph building code...
forces = graph.compute_forces(energy)
avg_force = tf.reduce_mean(forces, axis=-1)
print_node = tf.Print(energy, [energy], summarize=1000)
graph.save(force_tensor=forces, model_directory=name, out_nodes=[[print_node, 100],
→˓[avg_force, 25]])

This will print the energy every 100 steps and compute the average force every 25 steps (although it is unused). Note
that these two ways of affecting period both apply. So if the above graph was attached with tfcompute.attach(.
.., period=25) then the print_node will be run only every 2500 steps.

2.6.10 Printing

If you would like to print out the values from nodes in your graph, you can add a print node to the out_nodes. For
example:

...graph building code...
forces = graph.compute_forces(energy)
print_node = tf.Print(energy, [energy], summarize=1000)
graph.save(force_tensor=forces, model_directory=name, out_nodes=[print_node])

The summarize keyword sets the maximum number of numbers to print. Be wary of printing thousands of numbers
per step.

2.6.11 Optional: Keras Layers for Model Building

Currently HOOMD-TF supports Keras layers in model building. We do not yet support Keras Model.compile()
or Model.fit(). This example shows how to set up a neural network model using Keras layers.

import tensorflow as tf
from tensorflow.keras import layers
import hoomd.htf as htf

NN = 64
N_hidden_nodes = 5
graph = htf.graph_builder(NN, output_forces=False)
r_inv = graph.nlist_rinv
input_tensor = tf.reshape(r_inv, shape=(-1,1), name='r_inv')
#we don't need to explicitly make a keras.Model object, just layers
input_layer = layers.Input(tensor=input_tensor)
hidden_layer = layers.Dense(N_hidden_nodes)(input_layer)
output_layer = layers.Dense(1, input_shape=(N_hidden_nodes,))(hidden_layer)
#do not call Model.compile, just use the output in the TensorFlow graph
nn_energies = tf.reshape(output_layer, [-1, NN])
calculated_energies = tf.reduce_sum(nn_energies, axis=1, name='calculated_energies')
calculated_forces = graph.compute_forces(calculated_energies)
#cost and optimizer must also be set through TensorFlow, not Keras
cost = tf.losses.mean_squared_error(calculated_forces, graph.forces)

(continues on next page)
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(continued from previous page)

optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)
#save using graph.save, not Keras Model.compile
graph.save(model_directory='/tmp/keras_model/', out_nodes=[ optimizer])

The model can then be loaded and trained as normal. Note that keras.models.Model.fit() is not currently
supported. You must train using tensorflowcompute.tfcompute as explained in the next section.

2.6.12 Complete Examples

The directory htf/models contains some example scripts.

2.6.13 Lennard-Jones with 1 Particle Type

graph = hoomd.htf.graph_builder(NN)
#use convenience rinv
r_inv = graph.nlist_rinv
p_energy = 4.0 / 2.0 * (r_inv**12 - r_inv**6)
#sum over pairwise energy
energy = tf.reduce_sum(p_energy, axis=1)
forces = graph.compute_forces(energy)
graph.save(force_tensor=forces, model_directory='/tmp/lj-model')

2.7 Using a Graph in a Simulation

You may use a saved TensorFlow model via:

import hoomd, hoomd.md
import hoomd.htf as htf

...hoomd initialization code...
with htf.tfcompute(model_dir) as tfcompute:

nlist = hoomd.md.nlist.cell()
tfcompute.attach(nlist, r_cut=3)

...other hoomd code...

hoomd.run(...)

where model_dir is the directory where the TensorFlow model was saved, nlist is a hoomd neighbor list object
and r_cut is the maximum distance for to consider particles as being neighbors. nlist is optional and is not
required if your graph doesn’t use the nlist object (you passed NN = 0 when building your graph).

2.7.1 Logging

The default logging level of Tensorflow is relatively noisy. You can reduce the amount of logged statements via
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2.7.2 Batching

If you used per-molecule positions or nlist in your graph, you can either rely on hoomd-tf to find your molecules by
traversing the bonds in your system (default) or you can specify what are molecules in your system. They are passed
via attach(..., mol_indices=[[..]]). The mol_indices are a, possibly ragged, 2D python list where
each element in the list is a list of atom indices for a molecule. For example, [[0,1], [1]] means that there are
two molecules with the first containing atoms 0 and 1 and the second containing atom 1. Note that the molecules can
be different size and atoms can exist in multiple molecules.

If you do not call graphbuilder.graph_builder.build_mol_rep() while building your graph, you can
optionally split your batches to be smaller than the entire system. This is set via the batch_size integer argument
to tfcompute.tfcompute.attach(). This can help for high-memory simulations where you cannot spare the
GPU memory to have each tensor be the size of your system.

2.7.3 Bootstrapping Variables

If you have trained variables previously and would like to load them into the current TensorFlow graph, you can use the
bootstrap and bootstrap_map arguments. bootstrap should be a checkpoint file path or model directory
path (latest checkpoint is used) containing variables which can be loaded into your tfcompute graph. Your model will
be built, then all variables will be initialized, and then your bootstrap checkpoint will be loaded and no variables will
be reloaded even if there exists a checkpoint in the model directory (to prevent overwriting your bootstrap variables).
bootstrap_map is an optional additional argument that will have keys that are variable names in the bootstrap
checkpoint file and values that are names in the tfcompute graph. This can be used when your variable names do not
match up. Here are two example demonstrating with and without a bootstrap_map:

Here’s an example that creates some variables that could be trained offline without Hoomd. In this example, they just
use their initial values.

import tensorflow as tf

#make some variables
v = tf.Variable(8.0, name='epsilon')
s = tf.Variable(2.0, name='sigma')

#initialize and save them
saver = tf.train.Saver()
with tf.Session() as sess:

sess.run(tf.global_variables_initializer())
saver.save(sess, '/tmp/bootstrap/model')

We load them in the hoomd run script:

with hoomd.htf.tfcompute(model_dir,
bootstrap='/tmp/bootstrap/model') as tfcompute:
...

Here’s how we would load them in the hoomd run script if we want to change the names of the variables:

# here the pretrained variable parameters will replace variables with a different name
with hoomd.htf.tfcompute(model_dir,

bootstrap='/tmp/bootstrap/model',
bootstrap_map={'lj-epsilon':'epsilon', 'lj-sigma':'sigma'}) as tfcompute:
...
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2.7.4 Bootstrapping Variables from Other Models

Here’s an example of bootstrapping where you train with Hoomd-TF and then load the variables into a different model:

# build_models.py
import tensorflow as tf
import hoomd.htf as htf

def make_train_graph(NN, directory):
# build a model that fits the energy to a linear term
graph = htf.graph_builder(NN, output_forces=False)
# get r
nlist = graph.nlist[:, :, :3]
r = graph.safe_norm(nlist, axis=2)
# build energy model
m = tf.Variable(1.0, name='m')
b = tf.Variable(0.0, name='b')
predicted_particle_energy = tf.reduce_sum(m * r + b, axis=1)
# get energy from hoomd
particle_energy = graph.forces[:, 3]
# make them match
loss = tf.losses.mean_squared_error(particle_energy, predicted_particle_energy)
optimize = tf.train.AdamOptimizer(1e-3).minimize(loss)
graph.save(model_directory=directory, out_nodes=[optimize])

def make_force_graph(NN, directory):
# this model applies the variables learned in the example above
# to compute forces
graph = htf.graph_builder(NN)
# get r
nlist = graph.nlist[:, :, :3]
r = graph.safe_norm(nlist, axis=2)
# build energy model
m = tf.Variable(1.0, name='m')
b = tf.Variable(0.0, name='b')
predicted_particle_energy = tf.reduce_sum(m * r + b, axis=1)
forces = graph.compute_forces(predicted_particle_energy)
graph.save(force_tensor=forces, model_directory=directory)

make_train_graph(64, 16, '/tmp/training')
make_force_graph(64, 16, '/tmp/inference')

Here is how we run the training model:

#run_train.py
import hoomd, hoomd.md
import hoomd.htf as htf

hoomd.context.initialize()

with htf.tfcompute('/tmp/training') as tfcompute:
rcut = 3.0
system = hoomd.init.create_lattice(unitcell=hoomd.lattice.sq(a=2.0),

n=[8,8])
nlist = hoomd.md.nlist.cell(check_period = 1)
lj = hoomd.md.pair.lj(rcut, nlist)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
hoomd.md.integrate.mode_standard(dt=0.005)

(continues on next page)

2.7. Using a Graph in a Simulation 17



HOOMD-TF, Release 1.0.2

(continued from previous page)

hoomd.md.integrate.nve(
group=hoomd.group.all()).randomize_velocities(kT=0.2, seed=42)

tfcompute.attach(nlist, r_cut=rcut)
hoomd.run(100)

Load the variables trained in the training run into the model which computes forces:

#run_inference.py
import hoomd, hoomd.md
import hoomd.htf as htf

hoomd.context.initialize()
with htf.tfcompute('/tmp/inference',

bootstrap='/tmp/training') as tfcompute:
rcut = 3.0
system = hoomd.init.create_lattice(unitcell=hoomd.lattice.sq(a=2.0),

n=[8,8])
nlist = hoomd.md.nlist.cell(check_period = 1)
#notice we no longer compute forces with hoomd
hoomd.md.integrate.mode_standard(dt=0.005)
hoomd.md.integrate.nve(

group=hoomd.group.all()).randomize_velocities(kT=0.2, seed=42)

tfcompute.attach(nlist, r_cut=rcut)
hoomd.run(100)

2.8 Utilities

There are a few convenience functions for plotting potential energies of pairwise potentials and constructing CG
mappings.

2.8.1 RDF

To compute an RDF, use graphbuilder.graph_builder.compute_rdf():

# set-up graph to compute energy
...
rdf = graph.compute_rdf([1,10], 'rdf', nbins=200)
graph.running_mean(rdf, 'avg-rdf')
# run the simulation
...
variables = htf.load_variables(model_dir, ['avg-rdf'])
print(variables)

2.8.2 Pairwise Potential and Forces

To compute a pairwise potential, use utils.compute_pairwise_potential():
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...
r = numpy.arange(1, 10, 1)
potential, forces = htf.compute_pairwise_potential('/path/to/model', r, potential_
→˓tensor)
...

2.8.3 Biasing with EDS

To apply Experiment Directed Simulation biasing to a system, use utils.eds_bias():

eds_alpha = htf.eds_bias(cv, set_point=3.0, period=100)
eds_energy = eds_alpha * cv
eds_forces = graph.compute_forces(eds_energy)
graph.save('eds-graph', eds_forces)

Here, htf.eds_bias(cv, set_point, period, learning_rate, cv_scale, name) computes
the lagrange multiplier/eds coupling that are used to bias the simulation. It may be useful to also take the average
of eds_alpha so that you can use it in a subsequent simulation:

avg_alpha = graph.running_mean(eds_alpha, name='avg-eds-alpha')
.....
# after simulation
vars = htf.load_variables('model/directory', ['avg-eds-alpha'])
print(vars['avg-eds-alpha'])

2.8.4 Trajectory Parsing

To process information from a trajectory, use utils.run_from_trajectory():

2.8.5 Coarse-Graining

Find Molecules

To go from atom index to particle index, use the utils.find_molecules():

# The method takes in a hoomd system as an argument.
...
molecule_mapping_index = hoomd.htf.find_molecules(system)
...

Sparse Mapping

The utils.sparse_mapping() method creates the necessary indices and values for defining a sparse tensor in
tensorflow that is a mass-weighted 𝑀×𝑁 mapping operator where 𝑀 is the number of coarse-grained particles and 𝑁
is the number of atoms in the system. In the following example,mapping_per_molecule is a list of 𝑘×𝑛 matrices
where 𝑘 is the number of coarse-grained sites for each molecule and 𝑛 is the number of atoms in the corresponding
molecule. There should be one matrix per molecule. Since the example is for a 1 bead mapping per molecule the
shape is 1 × 𝑛. The ordering of the atoms should follow the output from the find_molecules method. The variable
molecule_mapping_index is the output from utils.find_molecules().
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#The example is shown for 1 coarse-grained site per molecule.
...
molecule_mapping_matrix = numpy.ones([1, len(molecule_mapping_index[0])], dtype=np.
→˓int)
mapping_per_molecule = [molecule_mapping_matrix for _ in molecule_mapping_index]
cg_mapping = htf.sparse_mapping(mapping_per_molecule, \

molecule_mapping_index, system = system)
...

Center of Mass

utils.center_of_mass() maps the given positions according to the specified mapping operator to coarse-grain
site positions, while considering periodic boundary conditions. The coarse grain site position is placed at the center of
mass of its constituent atoms.

...
mapped_position = htf.center_of_mass(graph.positions[:,:3], cg_mapping, system)
#cg_mapping is the output from the sparse_matrix(...) method and indicates how each
→˓molecule is mapped.
...

Compute Mapped Neighbor List

utils.compute_nlist() returns the neighbor list for a set of mapped coarse-grained particles. In the follow-
ing example, mapped_positions is the mapped particle positions obeying the periodic boundary condition, as
returned by utils.center_of_mass(), rcut is the cutoff radius and NN is the number of nearest neighbors to
be considered for the coarse-grained system.

...
mapped_nlist= htf.compute_nlist(mapped_positions, rcut, NN, system)
...

2.8.6 Tensorboard

You can visualize your models with tensorboard. First, add write_tensorboard=True to the htf.
tfcompute.tfcompute constructor. This will add a new directory called tensorboard to your model di-
rectory.

After running, you can launch tensorboard like so:

tensorboard --logdir=/path/to/model/tensorboard

and then visit http://localhost:6006 to view the graph.

Saving Scalars in Tensorboard

If you would like to save a scalar over time, like total energy or training loss, you can use the Tensorboard functionality.
Add scalars to the Tensorboard summary during the build step:

tf.summary.scalar('total-energy', tf.reduce_sum(particle_energy))
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and then add the write_tensorboard=True flag during the htf.tfcompute.tfcompute initialization.
The period of tensorboard writes is controlled by the save_period flag to the htf.tfcompute.tfcompute.
attach() command. See the Tensorboard section below for how to view the resulting scalars.

Viewing when TF is running on remote server

If you are running on a server, before launching tensorboard use this ssh command to login:

ssh -L 6006:[remote ip or hostname]:6006 username@remote

and then you can view after launching on the server via your local web browser.

Viewing when TF is running in container

If you are running docker, you can make this port available a few different ways. The first is to get the IP address of
your docker container (google how to do this if not default), which is typically 172.0.0.1, and then visit http:/
/172.0.0.1:6006 or equivalent if you have a different IP address for your container.

The second option is to use port forwarding. You can add a port forward flag, -p 6006:6006, when running the
container which will forward traffic from your container’s 6006 port to the host’s 6006 port. Again, then you can visit
http://localhost:6006 (linux) or http://127.0.0.1:6006 (windows).

The last method, which usually works when all others fail, is to have all the container’s traffic be on the host. You
can do this by adding the flag --net=host to the run command of the container. Then you can visit http://
localhost:6006.

2.8.7 Interactive Mode

Experimental, but you can trace your graph in realtime in a simulation. Add both the write_tensorboard=True
to the constructor and the _debug_mode=True flag to attach command. You then open another shell and connect
by following the online instructions for interactive debugging from Tensorboard.

2.9 Docker Image for Development

To use the included docker image:

docker build -t hoomd-tf .

To run the container:

docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
-v /insert/path/to/htf/:/srv/hoomd-blue/htf hoomd-tf bash

The cap--add and security-opt flags are optional and allow gdb debugging. Install gdb and python3-dbg
packages to use gdb with the package.

Once in the container:

cd /srv/hoomd-blue && mkdir build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Debug\

-DENABLE_CUDA=OFF -DENABLE_MPI=OFF -DBUILD_HPMC=off\
-DBUILD_CGCMM=off -DBUILD_MD=on -DBUILD_METAL=off \

(continues on next page)
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-DBUILD_TESTING=off -DBUILD_DEPRECATED=off -DBUILD_MPCD=OFF
make -j2

2.10 Change Log

2.10.1 v1.0.2 (2020-8-14)

Bug fixes

• EDS Bias was not using mean for computing offset

• EDS Bias was not resetting statistics correctly

• Removed stale test-cc directory that caused cmake errors

2.10.2 v1.0.1 (2020-7-27)

Bug fixes

• Prevented CPU overflow when nlist is too small (and added unit test)

• Adding check on mapping validity

2.10.3 v1.0 (2020-7-20)

JOSS Review

Hoomd-TF has been published as a peer-reviewed article in the Journal of Open Source Software (JOSS)

New Features

• Added pre-built molecular features

• Added MDAnalysis style selection for defining mapping operators

Enhancements

• Docs can now be built without HTF install

• mol batching performance is much better

• Simplified variable saving

• More example notebooks and reduced file sizes of example trajectories

• Supports dynamic boxes

• Better EDS bias naming

• Prevents accidentally computing forces from positions, instead of nlist

• Added guards against compiler mismatch

• Added sanity tests to prevent unsupported CPU/GPU modes

• Added benchmarking script

• Added check for nlist overflows on GPU

• Added check for mismatch on saving variables/tensors
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• Fixed all compiler warnings

• Added Dockerfile for containerized use

Bug Fixes

• Empty tensorboard summaries no longer crash

• Prevented import issues with name clashes between packages and classes

2.10.4 v0.6 (2020-02-21)

Enhancements

• Migrated documentation to sphinx

• Added Jupyter notebook examples

• Various documentation improvements

• Added CUDA 10 Support

2.10.5 v0.5 (2019-10-17)

Bug Fixes

• Types are now correctly translated to TF

2.10.6 v0.4 (2019-09-25)

New Features

• Added experiment directed simulation biasing to htf.

Enhancements

• Added box dimension to computation graph (graph.box and graph.box_size)

• Can now wrap position derived distances with graph.wrap_vector

• Made it possible to specify period for out_nodes

Bug Fixes

• Fixed dangling list element in rev_mol_indices

2.10.7 v0.3 (2019-07-03)

Enhancements

• Batching by molecule now has a atom id to mol id/atom id look-up (rev_mol_indices)

• Version string is visible in package

• Example models now take an argument specifying where to save them

• When batching, atom sorting is automatically disabled

• compute_pairwise_potential now outputs force as well as potential

Bug Fixes
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• Computing nlist in TF now correctly sorts when requested

• Fixed Mac OS specific issues for compiling against existing HOOMD-blue install

• Running mean computation variables are now marked as untrainable

2.10.8 v0.2 (2019-06-03)

New Features

• Added attach batch_size argument enabling batching of TF calls

• Can now batch by molecule, enabling selection/exclusion of molecules

• Added XLA option to improve TF speed

• Now possible to compile the plugin after hoomd-blue install

• Changed name of package to htf instead of tensorflow_plugin

Enhancements

• Changed output logging to only output TF items to the tf_manager.log and

• Log-level is now consistent with hoomd

• Added C++ unit tests skeleton in the same format as HOOMD-blue. Compile with -DBUILD_TESTING=ON
to use.

• Switched to hoomd-blue cuda error codes

• Added MPI tests with domain decomposition

• Improved style consistency with hoomd-blue

• Cmake now checks for TF and hoomd versions while building hoomd-tf.

2.10.9 v0.1 (2019-04-22)

• Made Python packages actual dependencies.

• Switched to using hoomd-blue cuda error codes.

• Removed TaskLock from C++ code.

• Documentation updates

• Included license.

• User can now use specific hoomd forces in the hoomd2tf force mode.

• Added the ability to create a custom nlist.

• Made unit tests stricter and fixed some cuda synchronization bugs.

• Fixed TF GPU Compiling bug.

• Fixed ordering/masking error in mapping nlist and type of neighbor particles in nlist.

• Fixed a bug which caused a seg fault in nonlist settings.
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2.11 Known Issues

The following is a list of known issues. To report another issue, please use the issue tracker.

2.11.1 Using Positions

Hoomd re-orders positions to improve performance. If you are using CG mappings that rely on ordering of positions,
be sure to disable this:

c = hoomd.context.initialize()
c.sorter.disable()

2.11.2 Exploding Gradients

There is a bug in norms (https://github.com/tensorflow/tensorflow/issues/12071) that somtimes prevents optimizers
to work well with TensorFlow norms. Note that this is only necessary if you’re summing up gradients, like what is
commonly done in computing gradients in optimizers. This isn’t usually an issue for just computing forces. There are
three ways to deal with this:

Small Training Rates

When Training something like a Lennard-Jones potential or other 1/r potential, high gradients are possible. You
can prevent expoding gradients by using small learning rates and ensuring variables are initialized so that energies are
finite.

Safe Norm

There is a workaround (graphbuilder.graph_builder.safe_norm()) in Hoomd-TF. There is almost no
performance penalty, so it is fine to replace tf.norm with graphbuilder.graph_builder.safe_norm()
throughout. This method adds a small amount to all the norms though, so if you rely on some norms being zero it will
not work well.

Clipping Gradients

Another approach is to clip gradients instead of using safe_norm:

optimizer = tf.train.AdamOptimizer(1e-4)
gvs = optimizer.compute_gradients(cost)
capped_gvs = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gvs]
train_op = optimizer.apply_gradients(capped_gvs)

Neighbor Lists

Using a max-size neighbor list is non-ideal, especially in CG simulations where density is non-uniform.
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2.12 htf

Details

HOOMD-blue plus TensorFlow for online machine learning in MD simulations. Supports GPU and CPU execution.

Modules

2.12.1 graph_builder

Details

class graphbuilder.graph_builder(nneighbor_cutoff, output_forces=True, check_nlist=False)
Build the TensorFlow graph that will be used during the HOOMD run.

Parameters

• nneighbor_cutoff (int) – The maximum number of neigbhors to consider (can be 0)

• output_forces (bool) – True if your graph will compute forces to be used in Tensor-
Flow

• check_nlist (bool) – True will raise error if neighbor list overflows (nneighbor_cutoff
too low)

build_mol_rep(MN)
This creates mol_forces, mol_positions, and mol_nlist which have dimensions mol_number
x MN x 4 (mol_forces, mol_positions) and ? x MN x NN x 4 (mol_nlist) tensors batched by
molecule, where MN is the number of molecules. MN is determined at run time. The MN must be chosen
to be large enough to encompass all molecules. If your molecule is 6 atoms and you chose MN=18, then
the extra entries will be zeros. Note that your input should be 0 based, but subsequent tensorflow data will
be 1 based, since 0 means no atom. The specification of what is a molecule will be passed at runtime, so
that it can be dynamic if desired.

To convert a mol_quantity to a per-particle quantity, call scatter_mol_quanitity(mol_quantity)

Parameters MN (int) – The number of molecules

Returns None

compute_forces(energy, virial=None, positions=False, nlist=None)
Computes pairwise or position-dependent forces (field) given a potential energy function that computes
per-particle or overall energy

Parameters

• energy (tensor) – The potential energy

• virial (bool) – Defaults to None. Virial contribution will be computed if the graph
outputs forces. Can be set manually instead. Note that the virial term that depends on
positions is not computed.

• positions (tensor) – Defaults to False. Particle positions tensor to use for force
calculations. If set to True, uses self.positions. If set to False (default), no
position dependent forces will be computed. Only pairwise forces from neighbor list will
be applied. If set to a tensor, that tensor will be used instead of self.positions.

• nlist (tensor) – Defaults to None. Particle-wise neighbor list to use for force calcu-
lations. If not specified, uses self.nlist.
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Returns The TF force tensor. Note that the virial part will be stored as the class attribute
virial and will be saved automatically.

compute_rdf(r_range, name, nbins=100, type_i=None, type_j=None, nlist=None, positions=None)

Computes the pairwise radial distribution function, and appends the histogram tensor to the graph’s
out_nodes.

Parameters

• bins – The bins to use for the RDF

• name – The name of the tensor containing rdf. The name will be concatenated with ‘-r’
to create a tensor containing the r values of the rdf.

• type_i – Use this to select the first particle type.

• type_j – Use this to select the second particle type.

• nlist – Neighbor list to use for RDF calculation. By default it will use self.nlist.

• positions – Defaults to self.positions. This tensor is only used to get the origin
particle’s type. So if you’re making your own, just make sure column 4 has the type index.

Returns Historgram tensor of the RDF (not normalized).

masked_nlist(type_i=None, type_j=None, nlist=None, type_tensor=None)
Returns a neighbor list masked by the given particle type(s).

Parameters

• type_i – Use this to select the first particle type.

• type_j – Use this to select a second particle type (optional).

• nlist – Neighbor list to mask. By default it will use self.nlist.

• type_tensor – An N x 1 tensor containing the type(s) of the nlist origin. If None,
particle types from self.positions will be used.

Returns The masked neighbor list tensor.

nlist_rinv
Returns an N x NN tensor of 1 / r for each neighbor

running_mean(tensor, name, batch_reduction=’mean’)
Computes running mean of the given tensor

Parameters

• tensor (tensor) – The tensor for which you’re computing running mean

• name (str) – The name of the variable in which the running mean will be stored

• batch_reduction (str) – If the hoomd data is batched by atom index, how should
the component tensor values be reduced? Options are ‘mean’ and ‘sum’. A sum means
that tensor values are summed across the batch and then a mean is taking between batches.
This makes sense for looking at a system property like pressure. A mean gives a mean
across the batch. This would make sense for a per-particle property.

Returns A variable containing the running mean

static safe_div(numerator, denominator, delta=3e-06, **kwargs)
Use this method to avoid nan forces if doing 1/r or equivalent force calculations. There are some numerical
instabilities that can occur during learning when gradients are propagated. The delta is problem specific.
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Parameters

• numerator (tensor) – The numerator.

• denominator (tensor) – The denominator.

• delta – Tolerance for magnitude that triggers safe division.

Returns The safe division op (TensorFlow operation)

static safe_norm(tensor, delta=1e-07, **kwargs)
There are some numerical instabilities that can occur during learning when gradients are propagated. The
delta is problem specific. NOTE: delta of safe_div must be > sqrt(3) * (safe_norm delta) See this Tensor-
Flow issue <https://github.com/tensorflow/tensorflow/issues/12071>.

Parameters

• tensor – the tensor over which to take the norm

• delta – small value to add so near-zero is treated without too much accuracy loss.

Returns The safe norm op (TensorFlow operation)

save(model_directory, force_tensor=None, virial=None, out_nodes=None, move_previous=True)
Save the graph model to specified directory.

Parameters

• model_directory – Multiple files will be saved, including a dictionary with informa-
tion specific to hoomd-tf and TF model files.

• force_tensor – The forces that should be sent to hoomd

• virial – The virial which should be sent to hoomd. If None and you called com-
pute_forces, then the virial computed from that function will be saved.

• out_nodes – Any additional TF graph nodes that should be executed. For example,
optimizers, printers, etc. Each element of the list can itself be a list where the first element
is the node and the second element is the period indicating how often to execute it.

Returns None

save_tensor(tensor, name, save_period=1)
Saves a tensor to a variable

Parameters

• tensor (tensor) – The tensor to save

• name (str) – The name of the variable which will be saved

• save_period (int) – How often to save the variable

Returns None

wrap_vector(r)
Computes the minimum image version of the given vector.

Parameters r (tensor) – The vector to wrap around the HOOMD box.

Returns The wrapped vector as a TF tensor
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2.12.2 tfarraycomm

Overview

class tfarraycomm.tf_array_comm(nparray, hoomd_context=<sphinx.ext.autodoc.importer._MockObject
object>)

Set up HOOMD context and interface with C++ memory.

Parameters

• nparray – numpy array to share with the C++ process

• hoomd_context – HOOMD execution configuration (defaults to hoomd.context.
exec_conf)

getArray()
Convert C++ array into a numpy array.

Returns the converted numpy array

receive()
Receives the array from the C++ class instance.

send()
Sends the array to the C++ class instance.

2.12.3 tfcompute

Overview

Details

class tensorflowcompute.tfcompute(tf_model_directory, log_filename=’tf_manager.log’, de-
vice=None, bootstrap=None, bootstrap_map=None,
_debug_mode=False, _mock_mode=False,
write_tensorboard=False, use_xla=False)

TensorFlow Computations for HTF.

Parameters

• tf_model_directory – Directory in which to save the TensorFlow model files.

• log_filename – Name to use for the TensorFlow log file.

• device – Device (GPU) on which to execute, if a specific one is desired.

• bootstrap – If set to a directory, will search for and load a previously-saved model file

• bootstrap_map – A dictionary to be used when bootstrapping, pairing old models’ ten-
sor variable names with new ones. Key is new name, value is older model’s.

• _deubug_mode – Set this to True to see more debug messages.

• _mock_mode – Set this to True to run a “fake” calculation of forces that would be passed
to the HOOMD simulation without applying them.

• write_tensorboard – If True, a tensorboard file will be written in the
tf_model_directory.

• use_xla – If True, enables the accelerated linear algebra library in TensorFlow, which can
be useful for large and complicated tensor operations.
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attach(nlist=None, r_cut=0, save_period=1000, period=1, feed_dict=None, mol_indices=None,
batch_size=None)

Attaches the TensorFlow instance to HOOMD. The main method of this class, this method sets up Tensor-
Flow and gets HOOMD ready to interact with it.

Parameters

• nlist – The HOOMD neighbor list that will be used as the TensorFlow input.

• r_cut – Cutoff radius for neighbor listing.

• save_period – How often to save the TensorFlow data. Period here is measured by
how many times the TensorFLow model is updated. See period.

• period – How many HOOMD steps should pass before updating the TensorFlow model.
In combination with save_period, determines how many timesteps pass before TensorFlow
saves its data (slow). For example, with a save_period of 200, a period of 4, TensorFlow
will write to the tf_model_directory every 800 simulation steps.

• feed_dict – The dictionary keyed by tensor names and filled with corresponding val-
ues. See feed_dict in __init__.

• mol_indices – Molecule indices for each atom, identifying which molecule each atom
belongs to.

• batch_size – The size of batches if we are using batching. Cannot be used if molecule-
wise batching is active.

finish_update(batch_index, batch_frac)
Allow TF to read output and we wait for it to finish.

Parameters

• batch_index – index of batch to be processed

• batch_frac – fractional batch index, i.e. batch_frac = batch_index /
len(input)

get_forces_array()
Retrieve forces array as numpy array

get_nlist_array()
Retrieve neighbor list array as numpy array

get_positions_array()
Retrieve positions array as numpy array

get_virial_array()
Retrieve virial array as numpy array

rcut()
Define the cutoff radius used in the neighbor list. Adapted from hoomd/md/pair.py

scalar4_vec_to_np(array)
Convert from scalar4 dtype to numpy array :param array: the scalar4 array to be processed

set_reference_forces(*forces)
Sets the HOOMD reference forces to be used by TensorFlow. See C++ comments in TensorFlowCom-
pute.h

shutdown_tf()
Shut down the TensorFlow instance.
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2.12.4 tfmanager

Overview

class tfmanager.TFManager(graph_info, device, q, positions_buffer, nlist_buffer, forces_buffer,
box_buffer, virial_buffer, log_filename, dtype, debug,
write_tensorboard, use_feed, bootstrap, primary, bootstrap_map,
save_period, use_xla, mol_indices)

TFManager manages TensorFlow training and coordinates communication with HOOMD. Sets up the Tensor-
Flow graph, sets placeholder variable values, updates and saves the TensorFlow graph, passes output forces back
to HOOMD, and writes TensorBoard files.

Parameters

• graph_info – The structure of the TensorFlow graph, passed as a dict. See tfcompute.py

• device – Which device to run on. See tfcompute.py

• q – Threading queue that is used during execution of TensorFlow.

• positions_buffer – Buffer where particle positions are stored

• nlist_buffer – Address of the neighbor list tensor

• box_buffer – Address of the box tensor

• forces_buffer – Address of the forces tensor

• virial_buffer – Address of the virial tensor

• log_filename – Name of the file to output tensorflow logs

• dtype – Data type for tensor values, e.g. int32, float32, etc

• debug – True to run TensorFlow in debug mode

• write_tensorboard – Whether to output a tensorboard file

• use_feed – Whether or not to use a feed dictionary of tensor values

• bootstrap – Location of previously-trained model files to load, otherwise None

• primary – Whether this is the ‘primary’ instance of TFManager. Only one instance writes
logs and saves model files.

• bootstrap_map – A dictionary to be used when bootstrapping, pairing old models’ ten-
sor variable names with new ones. Key is new name, value is older model’s.

• save_period – How often to save the TensorFlow data. Period here is measured by how
many times the TensorFLow model is updated. See tfcompute.py.

• use_xla – If True, enables the accelerated linear algebra library in TensorFlow, which can
be useful for large and complicated tensor operations.

• mol_indices – The molecucule indices, if doing mol batch (None otherwise)

start_loop()
start_loop method of tfmanager. Prepares GPU for execution, gathers trainable variables, sets up
model saving, loads pre-trained variables, sets up tensorboard if requested and parses feed_dicts.
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2.12.5 utils

Overview

This module contains various utility functions that are used throughout the htf module. These are imported automat-
ically when htf is imported.

Details

utils.center_of_mass(positions, mapping, box_size, name=’center-of-mass’)
Comptue mapping of the given positions (N x 3) and mapping (M x N) considering PBC. Returns mapped
particles. :param positions: The tensor of particle positions :param mapping: The coarse-grain mapping used to
produce the particles in system :param box_size: A list contain the size of the box [Lx, Ly, Lz] :param name:
The name of the op to add to the TF graph

utils.compute_nlist(positions, r_cut, NN, box_size, sorted=False)
Compute particle pairwise neighbor lists.

Parameters

• positions – Positions of the particles

• r_cut – Cutoff radius (HOOMD units)

• NN – Maximum number of neighbors per particle

• box_size – A list contain the size of the box [Lx, Ly, Lz]

• sorted – Whether to sort neighbor lists by distance

Returns An [N X NN X 4] tensor containing neighbor lists of all particles and index

utils.compute_pairwise_potential(model_directory, r, potential_tensor_name, checkpoint=-1,
feed_dict={})

Compute the pairwise potential at r for the given model.

Parameters

• model_directory – The model directory

• r – A 1D grid of points at which to compute the potential.

• potential_tensor_name – The tensor containing potential energy.

• checkpoint – Which checkpoint to load. Default is -1, which loads latest checkpoint.
An integer indicates loading from the model directory. If you pass a string, it is interpreted
as a path.

• feed_dict – Allows you to add any other placeholder values that need to be added to
compute potential in your model

Returns A tuple of 1D arrays. First is the potentials corresponding to the pairwise distances in r,
second is the forces.

utils.eds_bias(cv, set_point, period, learning_rate=1, cv_scale=1, name=None)
This method computes and returns the Lagrange multiplier/EDS coupling constant (alpha) to be used as the EDS
bias in the simulation.

Parameters

• cv – The collective variable which is biased in the simulation
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• set_point – The set point value of the collective variable. This is a constant value which
is pre-determined by the user and unique to each cv.

• period – Time steps over which the coupling constant is updated. HOOMD time units are
used. If period=100 alpha will be updated each 100 time steps.

• learninig_rate – Learninig_rate in the EDS method.

• cv_scale – Used to adjust the units of the bias to HOOMD units.

• name – Name used as prefix on variables.

Returns Alpha, the EDS coupling constant.

utils.find_molecules(system)
Given a hoomd system, return a mapping from molecule index to particle index. This is a slow function and
should only be called once.

Parameters system – The molecular system in HOOMD.

Returns A list of length L (number of molecules) whose elements are lists of atom indices

utils.force_matching(mapped_forces, calculated_cg_forces, learning_rate=0.001)
This will minimize the difference between the mapped forces and calculated CG forces using the Adam oprim-
izer.

Parameters

• mapped_forces (tensor) – A tensor with shape M x 3 where M is number of CG
beads in the system. These are forces mapped from an all atom system.

• calculated_cg_forces (tensor) – A tensor with shape M x 3 where M is number
of CG beads in the system. These are CG forces estimated using a function or a basis set.

• learning_rate (float) – The learning_rate for optimization

Returns optimizer, cost

utils.load_variables(model_directory, names, checkpoint=-1, feed_dict={})
Adds variables from model_directory to the TF graph loaded from a checkpoint, optionally other than the
most recent one, or setting values with a feed dict.

Parameters

• model_directory – Directory from which to load model variables.

• names – names of TensorFlow variables to load

• checkpoint – checkpoint number of the trained model to load from. Default value is -1
for most recently saved model.

• feed_dict – optionally, use a feed dictionary to populate the model

utils.matrix_mapping(molecule, beads_distribution)

This will create a M x N mass weighted mapping matrix where M is the number of atoms in the molecule
and N is the number of mapping beads.

Parameters

• molecule – This is atom selection in the molecule (MDAnalysis Atoms object).

• beads_distribution – This is a list of beads distribution lists, Note that

each list should contain the atoms as strings just like how they appear in the topology file.
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Returns An array of M x N.

utils.mol_angle(mol_positions, type_i, type_j, type_k)
This method calculates the bond angle given three atoms batched by molecule

mol_positions Positions tensor of atoms batched by molecules. Can be created by calling build_mol_rep()
method in graphbuilder

type_i Index of the first atom (int type)

type_j Index of the second atom (int type)

type_k Index of the third atom (int type)

angles Tensor containing bond angles

utils.mol_bond_distance(mol_positions, type_i, type_j)
This method calculates the bond distance given two atoms batched by molecule

mol_positions Positions tensor of atoms batched by molecules. Can be created by calling build_mol_rep()
method in graphbuilder

type_i Index of the first atom (int type)

type_j Index of the second atom (int type)

v_ij Tensor containing bond distances

utils.mol_dihedral(mol_positions, type_i, type_j, type_k, type_l)
This method calculates the dihedral angle given four atoms batched by molecule

mol_positions Positions tensor of atoms batched by molecules. Can be created by calling build_mol_rep()
method in graphbuilder

type_i Index of the first atom (int type)

type_j Index of the second atom (int type)

type_k Index of the third atom (int type)

type_l Index of the fourth atom (int type)

dihedrals Tensor containing dihedral angles

utils.run_from_trajectory(model_directory, universe, selection=’all’, r_cut=10.0, period=10,
feed_dict={})

This will process information from a trajectory and run the user defined model on the nlist computed from the
trajectory.

Parameters

• model_directory (string) – The model directory

• universe – The MDAnalysis universe

• selection (string) – The atom groups to extract from universe

• r_cut (float) – The cutoff raduis to use in neighbor list calculations

• period (int) – Frequency of reading the trajectory frames

• feed_dict (dict) – Allows you to add any other placeholder values that need to be
added to compute potential in your model
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utils.sparse_mapping(molecule_mapping, molecule_mapping_index, system=None)
This will create the necessary indices and values for defining a sparse tensor in tensorflow that is a mass-weighted
M x N mapping operator.

Parameters

• molecule_mapping – This is a list of L x M matrices, where M is the number of atoms in
the molecule and L is the number of coarse-grain sites that should come out of the mapping.
There should be one matrix per molecule. The ordering of the atoms should follow what is
defined in the output from find_molecules

• molecule_mapping_index – This is the output from find_molecules. A list of length
L (number of molecules) whose elements are lists of atom indices

• system – The hoomd system. This is used to get mass values for the mapping, if you
would like to weight by mass of the atoms.

Returns A sparse tensorflow tensor of dimension N x N, where N is number of atoms

• search
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